Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (1): 59-70    DOI: 10.13523/j.cb.2208017
    
Research Progress of Therapeutic Nanobodies with Different Routes of Administration
WU Yue1,2,SUN Bai-he1,2,ZHAO Rui3,LI Yan-fei2,*(),MA Lin-lin2,*()
1 School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
3 Shanghai Donghai Geriatric Nursing Hospital, Shanghai 201303, China
Download: HTML   PDF(1238KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The nanobodies naturally existing in the sera of camels and Sharks provide a new idea for the development of antibody drugs because of their unique structural characteristics and molecular weight different from traditional monoclonal antibodies. In particular, the small molecular weight and excellent stability of nanobodies enable them to have greater flexibility in drug delivery. They can withstand harsh biophysical environments and are developed into oral preparations and aerosolized inhalants, which to some extent solves the challenges and limitations of traditional monoclonal antibodies in drug delivery routes. However, the small molecular weight also makes the nanobody have dual pharmacokinetic characteristics after administration, both excellent tissue penetration and rapid blood clearance. Improving the pharmacokinetic characteristics of nanobodies is of great significance to reduce the frequency of drug delivery and drug efficacy. In this review, the biological characteristics of nanobodies were first described, and then the pharmacokinetic characteristics of nanobodies and the methods to further improve the pharmacokinetics were emphatically introduced. On this basis, the research progress of nanobody drugs used for intravenous, subcutaneous, oral and inhalation drug delivery routes was reviewed, the feasibility, safety and therapeutic effect of different drug delivery routes for the treatment of specific diseases were evaluated, and the possible drug delivery routes of nanobodies were also analyzed, so as to provide a reference for the selection of drug delivery routes in the follow-up research and development of nanobody drugs.



Key wordsNanobody      Biological characteristics      Pharmacokinetics      Route of administration     
Received: 15 August 2022      Published: 14 February 2023
ZTFLH:  Q819  
Cite this article:

WU Yue, SUN Bai-he, ZHAO Rui, LI Yan-fei, MA Lin-lin. Research Progress of Therapeutic Nanobodies with Different Routes of Administration. China Biotechnology, 2023, 43(1): 59-70.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2208017     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I1/59

Fig.1 Different antibodies and their variable fragment structures from humans and camels (a) Human antibody IgG and its antibody derived fragments Fab and scFv and VH structure of variable region (b) HCAb of heavy chain antibody and VHH structure of variable region in camels
Fig.2 Different structures of Nb, drug delivery carrier and drug-controlled release system for reducing drug delivery frequency (a) Nb fused with Fc segment of IgG (b) Nb fused with HSA (c) Nb fused with HSA-targeted Nb (d) Nb combined with PEG (e) Nb liposome drug delivery system (f) Drug controlled release system
给药方式 疾病名称 药物名称 靶点 研究阶段 临床试验编号 参考文献
静脉+皮下给药 获得性血栓血小板减少性紫癜 Caplacizumab(ALX-0081) vWF 上市 - [3]
静脉给药 类风湿性关节炎 Vobanlizumab(ALX-0061) IL-6R IIb期临床 NCT02287922 [39]
癌症(G protein coupled
receptor, GPCR)
ALX-0651 CXCR4 I期临床停止 NCT01374503 -
局部晚期/转移性实体瘤 KN044 CTLA-4 I期临床 NCT04126590 -
实体瘤 TAS266 DR5 I期临床停止 NCT01529307 [42]
鳞状非小细胞肺癌 KN046 PD-L1/CTLA-4 Ⅲ期临床 NCT04474119 -
胸腺癌 KN046 - II期临床 NCT04925947 -
实体瘤 11A4-ABD-AF HER2 临床前 - [40]
神经退行性疾病 BI1034020 I期临床停止 NCT01958060 -
实体瘤 BI836880 VEGF/Ang2 I期临床 NCT02689505 -
实体瘤 S7 ADC EGFR 临床前 - [73]
晚期癌症 JS014 IL-21 I期临床 NCT05296772 -
实体瘤 αPD1-MSLN-CAR T PD-1 I期临床 NCT05373147 -
急性髓性白血病 BissCAR T CD13、TIM3 临床前 - [74]
复发难治多发性骨髓瘤 LCAR-B38M BCMA II期临床 NCT03758417 -
多发性骨髓瘤 JNJ-68284528 BCMA II期临床 NCT04133636 -
多发性骨髓瘤 Ciltacabtagene autoleucel
(cilta-cel)
BCMA IV期临床 NCT05201781 [6,41]
复发/难治性B细胞淋巴瘤 CD19/CD20 bispecific CAR-T CD19/CD20 I期临床 NCT03881761 -
皮下给药 类风湿性关节炎 Ozoralizumab(ATN-103) TNFα Ⅲ期临床 NCT04077567 [48]
斑块型银屑病 Sonelokimab(M1095) IL-17A/IL-17F IIb期临床 NCT03384745 [46]
化脓性汗腺炎 Sonelokimab(M1095) - II期临床 NCT05322473 -
dMMR/MSI-H晚期实体瘤 Envafolimab(KN035) PD-L1 II期临床 NCT03667170 [27,34]
2型糖尿病 Everestmab GLP-1R 临床前 - [47]
骨关节炎 M6495 ADAMTS-5 I期临床 NCT03583346 [45]
慢性乙型肝炎 ASC22 PD-L1 IIb期临床 NCT04465890 [49]
系统性红斑狼疮 Vobarilizumab(ALX-0061) - II期临床 NCT02437890 [39]
口服给药 炎症性肠病(克罗恩病) V565 TNFα II期临床 NCT02976129 [54,56]
炎症性肠病 V56B2 TNF-α/IL-23 临床前 - [57]
儿童腹泻 VHH batch 203027 (ARP1) RV病毒 II期临床 NCT01259765 [58]
腹泻 ARP3-ARP1 RV病毒 临床前 - [60]
腹泻 MucoRice-ARP1 RV病毒 临床前 - [59]
霍乱 Anti-LPS nanobody 霍乱弧菌O1 LPS 临床前 - [75]
空肠弯曲杆菌感染 LMN-101 鞭毛蛋白FlaA II期临床 NCT04182490 -
吸入给药 COVID-19 PiN21 SARS-CoV-2-RBD 临床前 - [63]
COVID-19 K-874A SARS-CoV-2-S1 临床前 - [62]
COVID-19 Nb11-59 SARS-CoV-
2RBD/ACE2
临床前 - [21]
给药方式 疾病名称 药物名称 靶点 研究阶段 临床试验编号 参考文献
COVID-19 Nb15-NbH-Nb15 SARS-CoV-2-RBD 临床前 - [76]
COVID-19 Nb91-Nb3-hFc SARS-CoV-2-RBD 临床前 - [77]
COVID-19 Nb1-Nb2-Fc SARS-CoV-2-RBD 临床前 - [64]
呼吸道肺炎 m17 /m35 RSV F蛋白 临床前 - [78]
呼吸道感染 ALX-0171 RSV病毒 II期临床停止 NCT03418571 [65]
哮喘 LQ036 IL-4Rα I期临床 NCT04993443 -
肌肉注射 流感 R1a-B6-Fc 流感病毒 临床前 - [66]
动脉注射 神经系统疾病/脑恶性肿瘤 NB11 - 临床前 - [67]
眼部给药 视网膜新生血管疾病 BI-X VEGF、Ang-2 临床前 - [70]
腹腔注射(小鼠模型) 发热伴血小板减少综合征 SNB02 SFTSV病毒 临床前 - [69]
狂犬病 Rab-E8/H7 狂犬病病毒 临床前 - [68]
黑色素瘤 2.17-mAlb LepR 临床前 - [79]
Table 1 Research progress of therapeutic nanobody drugs with different routes of administration
[1]   Vincke C, Muyldermans S. Introduction to heavy chain antibodies and derived nanobodies. Methods in Molecular Biology (Clifton, N J), 2012, 911: 15-26.
[2]   Liu M M, Li L, Jin D, et al. Nanobody - a versatile tool for cancer diagnosis and therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13(4): e1697.
[3]   Scully M, Cataland S R, Peyvandi F, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. The New England Journal of Medicine, 2019, 380(4): 335-346.
doi: 10.1056/NEJMoa1806311 pmid: 30625070
[4]   van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Research & Therapy, 2015, 17(1): 135.
[5]   Najmeddin A, Bahrololoumi Shapourabadi M, Behdani M, et al. Nanobodies as powerful pulmonary targeted biotherapeutics against SARS-CoV-2, pharmaceutical point of view. Biochimica et Biophysica Acta (BBA) - General Subjects, 2021, 1865(11): 129974.
doi: 10.1016/j.bbagen.2021.129974
[6]   Berdeja J G, Madduri D, Usmani S Z, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (cartitude-1): a phase 1b/2 open-label study. The Lancet, 2021, 398(10297): 314-324.
doi: 10.1016/S0140-6736(21)00933-8
[7]   Steeland S, Vandenbroucke R E, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discovery Today, 2016, 21(7): 1076-1113.
doi: 10.1016/j.drudis.2016.04.003 pmid: 27080147
[8]   Parray H A, Shukla S, Perween R, et al. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Applied Microbiology and Biotechnology, 2021, 105(16-17): 6315-6332.
doi: 10.1007/s00253-021-11488-4 pmid: 34423407
[9]   Gabrielsson J, Green A R, van der Graaf P H. Optimising in vivo pharmacology studies -practical PKPD considerations. Journal of Pharmacological and Toxicological Methods, 2010, 61(2): 146-156.
doi: 10.1016/j.vascn.2010.02.002 pmid: 20153442
[10]   Bathula N V, Bommadevara H, Hayes J M. Nanobodies: the future of antibody-based immune therapeutics. Cancer Biotherapy & Radiopharmaceuticals, 2021, 36(2): 109-122.
[11]   Mitchell L S, Colwell L J. Comparative analysis of nanobody sequence and structure data. Proteins, 2018, 86(7): 697-706.
doi: 10.1002/prot.25497
[12]   Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs, 2020, 34(1): 11-26.
doi: 10.1007/s40259-019-00392-z pmid: 31686399
[13]   Muyldermans S, Cambillau C, Wyns L. Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends in Biochemical Sciences, 2001, 26(4): 230-235.
pmid: 11295555
[14]   Muyldermans S. Nanobodies: natural single-domain antibodies. Annual Review of Biochemistry, 2013, 82: 775-797.
doi: 10.1146/annurev-biochem-063011-092449 pmid: 23495938
[15]   Rossotti M A, Bélanger K, Henry K A, et al. Immunogenicity and humanization of single-domain antibodies. The FEBS Journal, 2022, 289(14): 4304-4327.
doi: 10.1111/febs.15809
[16]   van Heeke G, Allosery K, de Brabandere V, et al. Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacology & Therapeutics, 2017, 169: 47-56.
[17]   Muyldermans S. A guide to: generation and design of nanobodies. The FEBS Journal, 2021, 288(7): 2084-2102.
doi: 10.1111/febs.15515
[18]   Zarschler K, Witecy S, Kapplusch F, et al. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2013, 12: 97.
doi: 10.1186/1475-2859-12-97 pmid: 24161153
[19]   Xian Z S, Ma L L, Zhu M, et al. Blocking the PD-1-PD-L 1 axis by a novel PD-1 specific nanobody expressed in yeast as a potential therapeutic for immunotherapy. Biochemical and Biophysical Research Communications, 2019, 519(2): 267-273.
doi: 10.1016/j.bbrc.2019.08.160
[20]   Gorlani A, de Haard H, Verrips T. Expression of VHHs in Saccharomyces cerevisiae. Methods in Molecular Biology (Clifton, N J), 2012, 911: 277-286.
[21]   Gai J W, Ma L L, Li G H, et al. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm, 2021, 2(1): 101-113.
doi: 10.1002/mco2.60 pmid: 33821254
[22]   Ackaert C, Smiejkowska N, Xavier C, et al. Immunogenicity risk profile of nanobodies. Frontiers in Immunology, 2021, 12: 632687.
doi: 10.3389/fimmu.2021.632687
[23]   Gibaldi M, Levy G. Pharmacokinetics in clinical practice. I. concepts. JAMA, 1976, 235(17): 1864-1867.
[24]   Heimbach T, Lakshminarayana S B, Hu W Y, et al. Practical anticipation of human efficacious doses and pharmacokinetics using in vitro and preclinical in vivo data. The AAPS Journal, 2009, 11(3): 602-614.
doi: 10.1208/s12248-009-9136-x
[25]   Lwin T M, Hernot S, Hollandsworth H, et al. Tumor-specific near-infrared nanobody probe rapidly labels tumors in an orthotopic mouse model of pancreatic cancer. Surgery, 2020, 168(1): 85-91.
doi: 10.1016/j.surg.2020.02.020
[26]   Hmila I, Cosyns B, Tounsi H, et al. Pre-clinical studies of toxin-specific nanobodies: evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming. Toxicology and Applied Pharmacology, 2012, 264(2): 222-231.
doi: 10.1016/j.taap.2012.07.033
[27]   Papadopoulos K P, Harb W, Peer C J, et al. First-in-human phase I study of envafolimab, a novel subcutaneous single-domain anti-PD-L 1 antibody, in patients with advanced solid tumors. The Oncologist, 2021, 26(9): e1514-e1525.
doi: 10.1002/onco.13817
[28]   Li T F, Bourgeois J P, Celli S, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. The FASEB Journal, 2012, 26(10): 3969-3979.
doi: 10.1096/fj.11-201384
[29]   Wouters Y, Jaspers T, de Strooper B, et al. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids and Barriers of the CNS, 2020, 17(1): 62.
doi: 10.1186/s12987-020-00226-z pmid: 33054787
[30]   Soleimanizadeh A, Dinter H, Schindowski K. Central nervous system delivery of antibodies and their single-domain antibodies and variable fragment derivatives with focus on intranasal nose to brain administration. Antibodies (Basel, Switzerland), 2021, 10(4): 47.
[31]   Kijanka M, Dorresteijn B, Oliveira S, et al. Nanobody-based cancer therapy of solid tumors. Nanomedicine (London, England), 2015, 10(1): 161-174.
doi: 10.2217/nnm.14.178
[32]   Zaman R, Islam R A, Ibnat N, et al. Current strategies in extending half-lives of therapeutic proteins. Journal of Controlled Release, 2019, 301: 176-189.
doi: S0168-3659(19)30091-4 pmid: 30849445
[33]   Kontermann R E. Strategies for extended serum half-life of protein therapeutics. Current Opinion in Biotechnology, 2011, 22(6): 868-876.
doi: 10.1016/j.copbio.2011.06.012 pmid: 21862310
[34]   Li J, Deng Y H, Zhang W J, et al. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors. Journal of Hematology & Oncology, 2021, 14(1): 95.
[35]   Ishiwatari-Ogata C, Kyuuma M, Ogata H, et al. Ozoralizumab, a humanized anti-TNFα NANOBODY® compound, exhibits efficacy not only at the onset of arthritis in a human TNF transgenic mouse but also during secondary failure of administration of an anti-TNFα IgG. Frontiers in Immunology, 2022, 13: 853008.
doi: 10.3389/fimmu.2022.853008
[36]   Li L, Zhu Y, Liu M M, et al. Conjugation of oxaliplatin with PEGylated-nanobody for enhancing tumor targeting and prolonging circulation. Journal of Inorganic Biochemistry, 2021, 223: 111553.
doi: 10.1016/j.jinorgbio.2021.111553
[37]   Farasat A, Rahbarizadeh F, Ahmadvand D, et al. Effective suppression of tumour cells by oligoclonal HER2-targeted delivery of liposomal doxorubicin. Journal of Liposome Research, 2019, 29(1): 53-65.
doi: 10.1080/08982104.2018.1430829 pmid: 29621912
[38]   Nicolas A, Dejoux A, Poirier C, et al. Contribution of intrinsic fluorescence to the design of a new 3D-printed implant for releasing SDABS. Pharmaceutics, 2020, 12(10): 921.
doi: 10.3390/pharmaceutics12100921
[39]   Kim G W, Lee N R, Pi R H, et al. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Archives of Pharmacal Research, 2015, 38(5): 575-584.
doi: 10.1007/s12272-015-0569-8 pmid: 25648633
[40]   Xenaki K T, Dorrestijn B, Muns J A, et al. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics, 2021, 11(11): 5525-5538.
doi: 10.7150/thno.57510 pmid: 33859761
[41]   Safarzadeh Kozani P, Naseri A, Mirarefin S M J, et al. Nanobody-based CAR-T cells for cancer immunotherapy. Biomarker Research, 2022, 10(1): 24.
doi: 10.1186/s40364-022-00371-7 pmid: 35468841
[42]   Papadopoulos K P, Isaacs R, Bilic S, et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor. Cancer Chemotherapy and Pharmacology, 2015, 75(5): 887-895.
doi: 10.1007/s00280-015-2712-0 pmid: 25721064
[43]   Sargentini-Maier M L, de Decker P, Tersteeg C, et al. Clinical pharmacology of caplacizumab for the treatment of patients with acquired thrombotic thrombocytopenic purpura. Expert Review of Clinical Pharmacology, 2019, 12(6): 537-545.
doi: 10.1080/17512433.2019.1607293 pmid: 30977686
[44]   Matucci A, Vultaggio A, Danesi R. The use of intravenous versus subcutaneous monoclonal antibodies in the treatment of severe asthma: a review. Respiratory Research, 2018, 19(1): 154.
doi: 10.1186/s12931-018-0859-z pmid: 30115042
[45]   Siebuhr A S, Werkmann D, Bay-Jensen A C, et al. The anti-ADAMTS-5 nanobody® M6495 protects cartilage degradation ex vivo. International Journal of Molecular Sciences, 2020, 21(17): 5992.
doi: 10.3390/ijms21175992
[46]   Papp K A, Weinberg M A, Morris A, et al. IL17A/F nanobody sonelokimab in patients with plaque psoriasis: a multicentre, randomised, placebo-controlled, phase 2b study. The Lancet, 2021, 397(10284): 1564-1575.
doi: 10.1016/S0140-6736(21)00440-2
[47]   Pan H C, Su Y N, Xie Y N, et al. Everestmab, a novel long-acting GLP-1/anti GLP-1R nanobody fusion protein, exerts potent anti-diabetic effects. Artificial Cells, Nanomedicine, and Biotechnology, 2020, 48(1): 854-866.
doi: 10.1080/21691401.2020.1770268
[48]   Takeuchi T, Kawanishi M, Nakanishi M, et al. Phase II/III results of a trial of anti-tumor necrosis factor multivalent nanobody compound ozoralizumab in patients with rheumatoid arthritis. Arthritis & Rheumatology, 2022, 74(11): 1776-1785.
[49]   Wang G Q, Cui Y M, Xie Y, et al. HBsAg loss in chronic hepatitis B patients with subcutaneous PD-L 1 antibody ASC22 (envafolimab) plus nucleos (T)ide analogs treatment: interim results from a phase IIb clinical trial. Hepatology, 2021, 74(6): 1392A-1392A.
[50]   Tashima T. Delivery of orally administered digestible antibodies using nanoparticles. International Journal of Molecular Sciences, 2021, 22(7): 3349.
doi: 10.3390/ijms22073349
[51]   Reilly R M, Domingo R, Sandhu J. Oral delivery of antibodies. Future pharmacokinetic trends. Clinical Pharmacokinetics, 1997, 32(4): 313-323.
pmid: 9113439
[52]   Tong T, Wang L Y, You X R, et al. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomaterials Science, 2020, 8(21): 5804-5823.
doi: 10.1039/d0bm01151g pmid: 33016274
[53]   Hussack G, Hirama T, Ding W, et al. Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One, 2011, 6(11): e28218.
doi: 10.1371/journal.pone.0028218
[54]   Crowe J S, Roberts K J, Carlton T M, et al. Preclinical development of a novel, orally-administered anti-tumour necrosis factor domain antibody for the treatment of inflammatory bowel disease. Scientific Reports, 2018, 8(1): 4941.
doi: 10.1038/s41598-018-23277-7 pmid: 29563546
[55]   Crowe J S, Roberts K J, Carlton T M, et al. Oral delivery of the anti-tumor necrosis factor α domain antibody, V565, results in high intestinal and fecal concentrations with minimal systemic exposure in cynomolgus monkeys. Drug Development and Industrial Pharmacy, 2019, 45(3): 387-394.
doi: 10.1080/03639045.2018.1542708 pmid: 30395728
[56]   Nurbhai S, Roberts K J, Carlton T M, et al. Oral anti-tumour necrosis factor domain antibody V565 provides high intestinal concentrations, and reduces markers of inflammation in ulcerative colitis patients. Scientific Reports, 2019, 9(1): 14042.
doi: 10.1038/s41598-019-50545-x pmid: 31575982
[57]   Roberts K J, Cubitt M F, Carlton T M, et al. Preclinical development of a bispecific TNFα/IL-23 neutralising domain antibody as a novel oral treatment for inflammatory bowel disease. Scientific Reports, 2021, 11(1): 19422.
doi: 10.1038/s41598-021-97236-0 pmid: 34593832
[58]   Sarker S A, Jäkel M, Sultana S, et al. Anti-rotavirus protein reduces stool output in infants with diarrhea: a randomized placebo-controlled trial. Gastroenterology, 2013, 145(4): 740-748, e8.
doi: 10.1053/j.gastro.2013.06.053 pmid: 23831050
[59]   Tokuhara D, Álvarez B, Mejima M, et al. Rice-based oral antibody fragment prophylaxis and therapy against Rotavirus infection. The Journal of Clinical Investigation, 2013, 123(9): 3829-3838.
doi: 10.1172/JCI70266
[60]   Pant N, Marcotte H, Hermans P, et al. Lactobacilli producing bispecific llama-derived anti-rotavirus proteins in vivo for rotavirus-induced diarrhea. Future Microbiology, 2011, 6(5): 583-593.
doi: 10.2217/fmb.11.32
[61]   Chen F F, Liu Z H, Jiang F. Prospects of neutralizing nanobodies against SARS-CoV-2. Frontiers in Immunology, 2021, 12: 690742.
doi: 10.3389/fimmu.2021.690742
[62]   Haga K, Takai-Todaka R, Matsumura Y, et al. Nasal delivery of single-domain antibody improves symptoms of SARS-CoV-2 infection in an animal model. PLoS Pathogens, 2021, 17(10): e1009542.
doi: 10.1371/journal.ppat.1009542
[63]   Nambulli S, Xiang Y F, Tilston-Lunel N L, et al. Inhalable nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7(22): eabh0319.
doi: 10.1126/sciadv.abh0319
[64]   Chi X J, Zhang X H, Pan S N, et al. An ultrapotent RBD-targeted biparatopic nanobody neutralizes broad SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 2022, 7(1): 44.
doi: 10.1038/s41392-022-00912-4 pmid: 35140196
[65]   Cunningham S, Piedra P A, Martinon-Torres F, et al. Nebulised ALX-0171 for respiratory syncytial virus lower respiratory tract infection in hospitalised children: a double-blind, randomised, placebo-controlled, phase 2b trial. The Lancet Respiratory Medicine, 2021, 9(1): 21-32.
doi: 10.1016/S2213-2600(20)30320-9
[66]   del Rosario J M M, Smith M, Zaki K, et al. Protection from influenza by intramuscular gene vector delivery of a broadly neutralizing nanobody does not depend on antibody dependent cellular cytotoxicity. Frontiers in Immunology, 2020, 11: 627.
doi: 10.3389/fimmu.2020.00627 pmid: 32547534
[67]   Lesniak W G, Chu C Y, Jablonska A, et al. PET imaging of distinct brain uptake of a nanobody and similarly-sized PAMAM dendrimers after intra-arterial administration. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(9): 1940-1951.
doi: 10.1007/s00259-019-04347-y pmid: 31161257
[68]   Terryn S, Francart A, Lamoral S, et al. Protective effect of different anti-rabies virus VHH constructs against rabies disease in mice. PLoS One, 2014, 9(10): e109367.
doi: 10.1371/journal.pone.0109367
[69]   Wu X L, Li Y L, Huang B L, et al. A single-domain antibody inhibits SFTSV and mitigates virus-induced pathogenesis in vivo. JCI Insight, 2020, 5(13): e136855.
doi: 10.1172/jci.insight.136855
[70]   Fuchs H, Chen L Z, Low S, et al. Ocular and systemic pharmacokinetics of BI-X, a nanobody targeting VEGF and Ang-2, after intravitreal dosing in cynomolgus monkeys - Evidence for half-life extension by albumin. Experimental Eye Research, 2021, 205: 108486.
doi: 10.1016/j.exer.2021.108486
[71]   Jakubiak P, Alvarez-Sánchez R, Fueth M, et al. Ocular pharmacokinetics of intravitreally injected protein therapeutics: comparison among standard-of-care formats. Molecular Pharmaceutics, 2021, 18(6): 2208-2217.
doi: 10.1021/acs.molpharmaceut.0c01218 pmid: 34014104
[72]   Camacho-Villegas T A, Mata-González M T, García-Ubbelohd W, et al. García-Ubbelohd W, et al. Intraocular penetration of a vNAR: in vivo and in vitro VEGF165 neutralization. Marine Drugs, 2018, 16(4): 113.
doi: 10.3390/md16040113
[73]   Fan J S, Zhuang X L, Yang X Y, et al. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduction and Targeted Therapy, 2021, 6: 320.
doi: 10.1038/s41392-021-00666-5 pmid: 34475375
[74]   He X, Feng Z J, Ma J, et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood, 2020, 135(10): 713-723.
doi: 10.1182/blood.2019002779 pmid: 31951650
[75]   Ebrahimizadeh W, Mousavi Gargari S, Rajabibazl M, et al. Isolation and characterization of protective anti-LPS nanobody against V. cholerae O 1 recognizing Inaba and Ogawa serotypes. Applied Microbiology and Biotechnology, 2013, 97(10): 4457-4466.
doi: 10.1007/s00253-012-4518-x pmid: 23135228
[76]   Wu X L, Cheng L, Fu M, et al. A potent bispecific nanobody protects hACE 2 mice against SARS-CoV-2 infection via intranasal administration. Cell Reports, 2021, 37(3): 109869.
doi: 10.1016/j.celrep.2021.109869
[77]   Lu Q Z, Zhang Z L, Li H X, et al. Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. Journal of Nanobiotechnology, 2021, 19(1): 33.
doi: 10.1186/s12951-021-00768-w pmid: 33514385
[78]   Xun G J, Song X P, Hu J, et al. Potent human single-domain antibodies specific for a novel prefusion epitope of respiratory syncytial virus F glycoprotein. Journal of Virology, 2021, 95(18): e0048521.
doi: 10.1128/JVI.00485-21
[79]   McMurphy T, Xiao R, Magee D, et al. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma. PLoS One, 2014, 9(2): e89895.
doi: 10.1371/journal.pone.0089895
[1] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[2] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[3] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[4] Jin-jing LI,Fei XU,Yan-wei JI,Mei SHU,Zhui TU,Jin-heng FU. Biopanning of Anti c-Myc-tag Nanobodies and Its Application for Bioimaging[J]. China Biotechnology, 2018, 38(2): 61-67.
[5] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[6] SHAO Li, MA Xiao-hui, WANG Xiang-yang, XU Han-mei. Progression of the Long-term Mechanism and Pharmacokinetics Analysis Technology of Fusion Protein Drugs[J]. China Biotechnology, 2017, 37(4): 83-88.
[7] WANG Dian-liang. The Types and Biological Characteristics of Cell Drug[J]. China Biotechnology, 2016, 36(5): 138-144.
[8] LI You-jian, ZHANG guo-qi, Gou ji-xing, CHEN xin-kai, DOU Xiao-xia, CHEN Chuang-fu, SHENG Jin-liang. Expression of Ovine Myostatin Gene and Construction and Identification of Nanobody Library Against Recombinant MSTN[J]. China Biotechnology, 2014, 34(9): 87-93.
[9] YANG Fan, HUANG Hu, LI Yi-chen, DENG Heng-lu, WU Mao-bo, ZHONG Ling, HOU Yong-min. Purification, Characterization and Pharmacokinetic Study of a Novel Long-acting Follicle-stimulating Hormone[J]. China Biotechnology, 2014, 34(2): 45-51.
[10] XIN Yi, GONG Da, XI Xin, SHI Hong-tao, LIU Sa, XU Xiu-fang, LI Na, HUANG Yi-min. Combined Enzymatic Digestion Method and Explants Culture Method Used on Primary Culture and Biological Characteristic Identification of Pulmonary Artery Smooth Muscle Cells of mice[J]. China Biotechnology, 2013, 33(9): 10-16.
[11] ZHAO Yu-jiao, PAN Yue, YAN Ling-mei, YUE Yao-fei, YANG Li-juan, SUN Qiang-ming. Adaptability of Dengue-Ⅱ Virus D01090 Strain in KMB17 Cells and Its Preliminary Identification[J]. China Biotechnology, 2012, 32(11): 1-7.
[12] ZHAO Yu-jiao, PAN Yue, YAN Ling-mei, YUE Yao-fei, YANG Li-juan, SUN Qiang-ming. Adaptability of Dengue-Ⅱ Virus D01090 Strain in KMB17 Cells and Its Preliminary Identification[J]. China Biotechnology, 2012, 32(11): 1-7.
[13] SUN Jiao-meng, XU Chuan-ying, ZHANG Zhong-hui, WANG Jing, YU Yan, HAN Wei. Recombinant Human Midkine Promotes the Repair of Partial Thickness Defects of Articular Cartilage in Rats[J]. China Biotechnology, 2010, 30(11): 1-5.
[14] HOU Xiao-Qiang Xian-Zhu XIA. Molecular Cloning, Prokaryotic Expression, and Biological Activity of α-2,6 Sialyltransferase[J]. China Biotechnology, 2009, 29(01): 17-22.