Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 61-67    DOI: 10.13523/j.cb.20180209
Orginal Article     
Biopanning of Anti c-Myc-tag Nanobodies and Its Application for Bioimaging
Jin-jing LI1,2,Fei XU1,2,Yan-wei JI2,3,Mei SHU2,3,Zhui TU3(),Jin-heng FU2()
1 Institute of Life Sciences, Nanchang University, Nanchang 330031, China
2 Sino-Germany Joint Research Institute,Nanchang University,Nanchang 330047, China
3 State Key Laboratory of Food Science and Technology, Nanchang University,Nanchang 330047, China
Download: HTML   PDF(902KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Using c-Myc-GST protein as target molecule, nanobodies that can specifically recognize c-Myc tags (EQKLISEEDL) were screened from phage displayed immune libraries.Methods: Screening of phages specific bingding c-Myc-tag by solid-phase biopanning technology. Positive clones were identified by phage ELISA and then sequenced. The DNA fragment that coded positive nanobody phages were subclone to pET25b(+)vector ,the recombinant expression vector transformed into E.coli Rosetta (DE3) cells for expression under induction of IPTG. SDS-PAGE was used to analysis of recombinant protein expression. Finally, the binding activity and specificity of the nanobodies were confirmed by indirect ELISA and quantum dot immunofluorescence technology. Result: After four cycles solid-phase biopanning, phage with binding activity clones were effectively enriched, the recovery rate was improved by 145 times and positive rate increased from 20.83% to 85.4%. The nanobodies A25 and A26 with high OD450 in phage-ELISA were recombinantly expressed , the production yield was 60 mg/L. Indirect ELISA results indicate that the recombinant proteins A25 and A26 can recognize the c-Myc-tag. Quantum dot immunofluorescence technology results showed that A25 could detect c-Myc protein in SP2/0 cells.Conclusion: Anti-c-Myc tagged nanobodies were successfully screened and two prokaryotic expression vector were constructed, the recombinant proteins achieved souble expression. And these laid the foundation for the detection of intracellular c-Myc protein.



Key wordsNanobody      c-Myc      Phage display      ELISA      Quantum dot     
Received: 02 August 2017      Published: 21 March 2018
ZTFLH:  Q819  
Cite this article:

Jin-jing LI,Fei XU,Yan-wei JI,Mei SHU,Zhui TU,Jin-heng FU. Biopanning of Anti c-Myc-tag Nanobodies and Its Application for Bioimaging. China Biotechnology, 2018, 38(2): 61-67.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180209     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/61

轮次 Myc-GST
包被浓度
(μg/ml)
噬菌体
投入量
(cfu)
噬菌体
洗脱量
(cfu)
回收率 富集度
1 100 1.0×1011 7.1×105 7.1×10-6 -
2 70 1.0×1011 8.7×106 8.7×10-5 12.25
3 50 1.0×1011 5.3×107 5.3×10-4 6.09
4 30 1.0×1011 1.0×108 1.0×10-3 1.94
Table 1 Enrichment of phages in biopanning
Fig.1 The results of the specific positive clones identified by phage-ELISA
Fig.2 Indirect phage-ELISA for positive phage clones
PC: Positive control; NC: Negative control; BK: Blank
Fig.3 PCR products for recombinant plasmid colony of A25、A26
M: DNA Maker; 1 ~ 4: A25 recombinant colonies; 5 ~ 8: A26 recombinant colonies
Fig.4 Comparison of the deduced amino acid sequences of nanobodies
Fig.5 SDS-PAGE analysis of purification of nanobody
M: Protein maker; 1: A25 nickel column flowthrough; 2: A26 nickel column flowthrough; 3~4: Nickel column purified protein
Fig.6 Indirect ELISA for the protein
NC: Negative control; BK: Blank
Fig.7 QDs-SA-labeled mouse SP2/0 imaging
[1]   Bayliss R, Burgess S G, Leen E , et al. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochemical Society Transactions, 2017,45(3):709-717.
doi: 10.1042/BST20160328 pmid: 28620032
[2]   Battey J, Moulding C, Taub R , et al. The human c-myc-oncogene-structural consequences of translocation into IgH locus in burkitt-lymphoma. Cell, 1983,34(3):779-787.
doi: 10.1016/0092-8674(83)90534-2 pmid: 6414718
[3]   Davis A C, Wims M, Spotts G D , et al. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes & Development, 1993,7(4):671-682.
[4]   Khaleghian M, Shakoori A, Razavi A E , et al. Relationship of amplification and expression of the C-MYC gene with survival among gastric cancer patients. Asian Pacific Journal of Cancer Prevention Apjcp, 2015,16(16):7061.
doi: 10.7314/APJCP.2015.16.16.7061 pmid: 26514491
[5]   Incassati A, Chandramouli A, Eelkema R , et al. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Research Bcr, 2010,12(6):213.
doi: 10.1186/bcr2723 pmid: 21067528
[6]   Pelengaris S, Khan M , Evan G. c-MYC: More than just a matter of life and death. Nature Reviews Cancer, 2002,2(10):764-776.
doi: 10.1038/nrc904
[7]   Yang X H, Tang F, Shin J , et al. A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature). Scientific Reports, 2017,7(1):41.
doi: 10.1038/s41598-017-00122-x pmid: 28246384
[8]   Haberl S, Haferlach T, Stengel A , et al. MYC rearranged B-cell neoplasms: Impact of genetics on classification. Cancer Genetics, 2016,209(10):431-439.
doi: 10.1016/j.cancergen.2016.08.007 pmid: 27810071
[9]   Szabo A G, Gang A O, Pedersen M O , et al. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma. Leukemia & Lymphoma, 2016,57(11):2526-2534.
doi: 10.1080/10428194.2016.1187275 pmid: 27243588
[10]   Wang W, Deng J, Wang Q , et al. Synergistic role of Cul1 and c-Myc: Prognostic and predictive biomarkers in colorectal cancer. Oncology Reports, 2017,38(1):245-252.
doi: 10.3892/or.2017.5671 pmid: 28560438
[11]   Li P, Shi J X, Dai L P , et al. Serum anti-MDM2 and anti-c-Myc autoantibodies as biomarkers in the early detection of lung cancer. Oncoimmunology, 2016,5(5):11.
doi: 10.1080/2162402X.2016.1138200 pmid: 27467958
[12]   Zhou S L, Yue W B, Fan Z M , et al. Autoantibody detection to tumor-associated antigens of P53, IMP1, P16, cyclin B1, P62, C-myc, Survivn, and Koc for the screening of high-risk subjects and early detection of esophageal squamous cell carcinoma. Diseases of the Esophagus, 2014,27(8):790-797.
doi: 10.1111/dote.2014.27.issue-8
[13]   He J L, Tian Y F, Cao Z , et al. An electrochemical immunosensor based on gold nanoparticle tags for picomolar detection of c-Myc oncoprotein. Sensors and Actuators B -Chemical, 2013,181(2):835-841.
doi: 10.1016/j.snb.2013.02.063
[14]   Beghein E, Gettemans J . Nanobody technology: A versatile toolkit for microscopic imaging, protein-protein interaction analysis, and protein function exploration. Frontiers in Immunology, 2017,8:771-774.
doi: 10.3389/fimmu.2017.00771 pmid: 28725224
[15]   Wang H, Meng A M, Li S H , et al. A nanobody targeting carcinoembryonic antigen as a promising molecular probe for non-small cell lung cancer. Molecular Medicine Reports, 2017,16(1):625-630.
doi: 10.3892/mmr.2017.6677 pmid: 5482067
[16]   Hussack G, Hirama T, Ding W , et al. Engineered single-domain antibodies with high protease resistance and thermal stability. Plos One, 2011,6(11):e28218.
doi: 10.1371/journal.pone.0028218 pmid: 3227653
[17]   Saerens D, Conrath K, Govaert J , et al. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. Journal of Molecular Biology, 2008,377(2):478-488.
doi: 10.1016/j.jmb.2008.01.022 pmid: 18262543
[18]   刘夏, 许杨, 涂追 , 等. 抗AFB-1单域重链抗体文库淘选方法的研究. 食品与生物技术学报, 2011,30(6):950-955.
[18]   Liu X, Xu Y, Tu Z , et al. Research on panning methods of single-domain heavy-chain antibody fragments for aftatoxin B-1 from non-immune library. J of Food Science and Biotechnology, 2011,30(6):950-955.
[19]   Muyldermans S, Baral T N, Retamozzo V C , et al. Camelid immunoglobulins and nanobody technology. Veterinary Immunology & Immunopathology, 2009,128(1-3):178.
doi: 10.1016/j.vetimm.2008.10.299 pmid: 19026455
[20]   Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z . Nanobody; an old concept and new vehicle for immunotargeting. Immunological Investigations, 2011,40(3):299.
doi: 10.3109/08820139.2010.542228 pmid: 21244216
[21]   Detalle L, Stohr T, PAlomo C , et al. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrobial Agents & Chemotherapy, 2016,92(1):6.
doi: 10.1128/AAC.01802-15 pmid: 4704182
[22]   Keyaerts M, Xavier C, Heemskerk J , et al. Phase I study of 68Ga-HER2-Nanobody for PET/CT assessment of HER2 expression in breast carcinoma. Journal of Nuclear Medicine, 2015,57(1):27.
doi: 10.2967/jnumed.115.162024 pmid: 26449837
[23]   Meyer T, Muyldermans S, Depicker A . Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014,32(5):263.
doi: 10.1016/j.tibtech.2014.03.001 pmid: 24698358
[24]   Sun B C, Zhao S W, Liu D G . Expression and implication of Ki67 and P53 protein in laryngeal carcinoma. Beijing Medical Journal, 2007,29(10):577-579.
[25]   Oliveira S, Heukers R, Sornkom J , et al. Targeting tumors with nanobodies for cancer imaging and therapy. Journal of Controlled Release Official Journal of the Controlled Release Society, 2013,172(3):607-617.
doi: 10.1016/j.jconrel.2013.08.298 pmid: 24035975
[26]   Jopling H M, Odell A F, Pellet-Many C , et al. Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase eegulates endothelial function and blood vessel formation. Cells, 2014,3(2):363-385.
doi: 10.3390/cells3020363 pmid: 4092869
[27]   Liu X, Xu Y, Wan D B , et al. Development of a nanobody-alkaline phosphatase fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in Cereal. Analytical Chemistry, 2015,87(2):1387-1394.
doi: 10.1021/ac504305z pmid: 25531426
[1] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[2] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[3] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[4] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[5] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[6] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[7] PANG Qian,CHEN Jing,WANG Xiao-hong,WANG Jia. Screening of Anti-Aflatoxin B1 ScFv Based on Phage Display Technology and Analysis of Its Protein Structure[J]. China Biotechnology, 2018, 38(12): 41-48.
[8] FANG Yuan,XU Guang-xian,WANG Xian,WANG Hong-xia,PAN Jun-fei. Construction of Camelid Natural Nanobody Phage Display Library and Screening for Anti-GDH Nanobody[J]. China Biotechnology, 2018, 38(12): 49-56.
[9] Qiao-li LANG,Lin YU,Qi-lin HE,Liang-peng GE,Xi YANG. Construction and Screening of a Phage Display Library of Single Chain Fv Antibody Efficiently from Mouse Immunized with Ovalbumin[J]. China Biotechnology, 2018, 38(11): 25-31.
[10] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[11] HU Chang-wu, XIE Jun, ZHU Nai-shuo. Comparison of the Inhibitory Efficiency of M13 Based 7-mer and 12-mer Phage Display Libraries Derived Peptides as Tumor Necrosis Factor Alpha Antagonist[J]. China Biotechnology, 2017, 37(5): 1-8.
[12] WU Meng-ling, ZHOU Jia-wang, DU Jun. Development and Application of A Double Monoclonal Antibody Sandwich ELISA for the Assay of Nodal[J]. China Biotechnology, 2017, 37(3): 51-57.
[13] XIANG Li, WANG Shen, TIAN Hai-shan, ZHONG Mei-juan, ZHOU Ru-bin, CAO Ding-guo, LIANG Peng, ZHANG Guo-ping, HE Tao, PANG Shi-feng. Constructing Mouse pET3C-Myc Vector and Its Expression in Rosetta(DE3) and Its Purification[J]. China Biotechnology, 2017, 37(2): 20-25.
[14] LIU Jun-wei, CHANG Rui-heng, HUI Peng, DONG Shi-shang, WANG Jin-feng, SUN Bo, YANG Cheng. Preparation of Anti-ebola Nucleoprotein Antibodies and Establishment of Sandwich ELISA Assay[J]. China Biotechnology, 2017, 37(10): 53-59.
[15] PANG Qian, MA Yu, LI Cheng, LIU Yun-tao, LIU Shu-liang, WANG Xiao-hong, LIU Ai-ping. Screening of Anti-aflatoxin B1 Single Domain Heavy Chain Antibody Based on Random Mutation of CDR2 and CDR3 Regions[J]. China Biotechnology, 2016, 36(7): 21-26.