Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (1): 50-58    DOI: 10.13523/j.cb.2207050
    
Advances in Non-antibiotic Therapy for Drug-resistant Bacteria
XIONG Li-yang,HU Xiu-ling,WEI Yun-lin**()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML   PDF(977KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Antibiotic resistance has been a serious challenge for human health at the beginning of the 21st century. With the appearance of more and more multi-drug resistant bacteria, traditional antibiotic treatments have been involved in a significant crisis in the last decades. A new non-antibiotic therapeutic strategy, including phage therapy, antimicrobial peptide therapy and anti-virulence factor therapy, has been received more attention in recent years, due to its unique advantages and clinical potential in dealing with bacterial infections, while effectively avoiding the emergence and spread of bacterial resistance. This strategy has been expected to synergize with or even replace traditional antibiotic therapy to fight against this crisis. In this paper, some important concepts and research advances about non-antibiotic therapies in the last decades have been summarized, and the clinical potential and challenges of non-antibiotic therapeutic strategies in the future have also been analyzed.



Key wordsAntibiotic resistance      Multi-drug resistant bacteria      Phage therapy      Antimicrobial peptides      Anti-virulence factor therapy     
Received: 23 July 2022      Published: 14 February 2023
ZTFLH:  Q939  
Cite this article:

XIONG Li-yang, HU Xiu-ling, WEI Yun-lin. Advances in Non-antibiotic Therapy for Drug-resistant Bacteria. China Biotechnology, 2023, 43(1): 50-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207050     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I1/50

Fig.1 Mechanism of phage infestation lysis of drug-resistant bacteria
Fig.2 Four membrane permeation models for antimicrobial peptides[20]
Fig.3 Three therapeutic strategies in anti-virulence factor therapy
抗菌策略 优势 劣势
噬菌体疗法(phage therapy) 高度特异性,研发周期短,成本较低,毒性低,安全性较好 抗菌谱较窄,易产生耐药性
抗菌肽疗法(antimicrobial peptides therapy) 抗菌谱较宽,不易产生耐药性,抗菌机制较多 存在一定毒性,剂量依赖性,研发成本高
群体感应抑制策略(quorum sensing inhibition strategy) 抗菌谱较宽,不易产生耐药性 存在一定毒性,剂量要求严格
生物膜抑制策略(biofilm inhibition strategy) 抗菌谱较宽,不易产生耐药性 存在一定毒性,研发成本高
毒素中和策略(toxin neutralization strategy) 抗菌谱较宽,不易产生耐药性 存在一定毒性,研发成本高
Table 1 Comparison of the advantages and disadvantages of different antibacterial strategies
[1]   Menor-Flores M, Vega-Rodríguez M A, Molina F. Computational design of phage cocktails based on phage-bacteria infection networks. Computers in Biology and Medicine, 2022, 142: 105186.
doi: 10.1016/j.compbiomed.2021.105186
[2]   Varela M F, Stephen J, Lekshmi M, et al. Bacterial resistance to antimicrobial agents. Antibiotics (Basel, Switzerland), 2021, 10(5): 593.
[3]   Hutchings M I, Truman A W, Wilkinson B. Antibiotics: past, present and future. Current Opinion in Microbiology, 2019, 51: 72-80.
doi: S1369-5274(19)30019-0 pmid: 31733401
[4]   Pang Z, Raudonis R, Glick B R, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 2019, 37(1): 177-192.
doi: 10.1016/j.biotechadv.2018.11.013
[5]   Gajdács M. The concept of an ideal antibiotic: implications for drug design. Molecules (Basel, Switzerland), 2019, 24(5): E892.
[6]   Lin D M, Koskella B, Lin H C. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2017, 8(3): 162-173.
doi: 10.4292/wjgpt.v8.i3.162 pmid: 28828194
[7]   Kortright K E, Chan B K, Koff J L, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host & Microbe, 2019, 25(2): 219-232.
[8]   Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, et al. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. Journal of Biomedical Science, 2022, 29(1): 23.
doi: 10.1186/s12929-022-00806-1 pmid: 35354477
[9]   Yu L, Wang S, Guo Z M, et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102(2): 971-983.
doi: 10.1007/s00253-017-8591-z
[10]   Kering K K, Kibii B J, Wei H P. Biocontrol of phytobacteria with bacteriophage cocktails. Pest Management Science, 2019, 75(7): 1775-1781.
doi: 10.1002/ps.5324 pmid: 30624034
[11]   Dedrick R M, Guerrero-Bustamante C A, Garlena R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine, 2019, 25(5): 730-733.
doi: 10.1038/s41591-019-0437-z
[12]   Nick J A, Dedrick R M, Gray A L, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185(11): 1860-1874, e12.
doi: 10.1016/j.cell.2022.04.024
[13]   Jault P, Leclerc T, Jennes S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. The Lancet Infectious Diseases, 2019, 19(1): 35-45.
doi: 10.1016/S1473-3099(18)30482-1
[14]   Xiang Y Y, Ma C L, Yin S, et al. Phage therapy for refractory periapical periodontitis caused by Enterococcus faecalis in vitro and in vivo. Applied Microbiology and Biotechnology, 2022, 106(5-6): 2121-2131.
doi: 10.1007/s00253-022-11810-8
[15]   Save J, Que Y A, Entenza J M, et al. Bacteriophages combined with subtherapeutic doses of flucloxacillin act synergistically against Staphylococcus aureus experimental infective endocarditis. Journal of the American Heart Association, 2022, 11(3): e023080.
doi: 10.1161/JAHA.121.023080
[16]   Eskenazi A, Lood C, Wubbolts J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nature Communications, 2022, 13(1): 302.
doi: 10.1038/s41467-021-27656-z pmid: 35042848
[17]   Danis-Wlodarczyk K M, Cai A, Chen A N, et al. Friends or foes? Rapid determination of dissimilar colistin and ciprofloxacin antagonism of Pseudomonas aeruginosa phages. Pharmaceuticals (Basel, Switzerland), 2021, 14(11): 1162.
[18]   Browne K, Chakraborty S, Chen R X, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides. International Journal of Molecular Sciences, 2020, 21(19): 7047.
doi: 10.3390/ijms21197047
[19]   Jiang Y J, Chen Y Y, Song Z Y, et al. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Advanced Drug Delivery Reviews, 2021, 170: 261-280.
doi: 10.1016/j.addr.2020.12.016 pmid: 33400958
[20]   Kumar P, Kizhakkedathu J N, Straus S K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1): 4.
doi: 10.3390/biom8010004
[21]   Koo H B, Seo J. Antimicrobial peptides under clinical investigation. Peptide Science, 2019, 111(5): e24122.
[22]   Magana M, Pushpanathan M, Santos A L, et al. The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases, 2020, 20(9): e216-e230.
doi: 10.1016/S1473-3099(20)30327-3
[23]   Zhou M, Qian Y X, Xie J Y, et al. Poly(2-oxazoline)-based functional peptide mimics:eradicating MRSA infections and persisters while alleviating antimicrobial resistance. Angewandte Chemie International Edition, 2020, 59(16): 6412-6419.
[24]   de Breij A, Riool M, Cordfunke R A, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science Translational Medicine, 2018, 10(423): eaan4044.
doi: 10.1126/scitranslmed.aan4044
[25]   Gan B H, Gaynord J, Rowe S M, et al. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chemical Society Reviews, 2021, 50(13): 7820-7880.
doi: 10.1039/d0cs00729c pmid: 34042120
[26]   Law S K K, Tan H S. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Microbiological Research, 2022, 260: 127032.
doi: 10.1016/j.micres.2022.127032
[27]   Leitão J H. Microbial virulence factors. International Journal of Molecular Sciences, 2020, 21(15): 5320.
doi: 10.3390/ijms21155320
[28]   Zhao J, Li X Y, Hou X Y, et al. Widespread existence of quorum sensing inhibitors in marine bacteria: potential drugs to combat pathogens with novel strategies. Marine Drugs, 2019, 17(5): 275.
doi: 10.3390/md17050275
[29]   Fleitas Martínez O, Cardoso M H, Ribeiro S M, et al. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Frontiers in Cellular and Infection Microbiology, 2019, 9: 74.
doi: 10.3389/fcimb.2019.00074 pmid: 31001485
[30]   Fong J, Zhang C D, Yang R L, et al. Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of P. aeruginosa. Scientific Reports, 2018, 8(1): 1155.
doi: 10.1038/s41598-018-19504-w
[31]   Lade H, Paul D, Kweon J H. Quorum quenching mediated approaches for control of membrane biofouling. International Journal of Biological Sciences, 2014, 10(5): 550-565.
doi: 10.7150/ijbs.9028 pmid: 24910534
[32]   Zhang M M, Wang M J, Zhu X C, et al. Equisetin as potential quorum sensing inhibitor of Pseudomonas aeruginosa. Biotechnology Letters, 2018, 40(5): 865-870.
doi: 10.1007/s10529-018-2527-2
[33]   Gopu V, Meena C K, Murali A, et al. Petunidin as a competitive inhibitor of acylated homoserine lactones in Klebsiella pneumoniae. RSC Advances, 2016, 6(4): 2592-2601.
doi: 10.1039/C5RA20677D
[34]   Ivanova A, Ivanova K, Tied A, et al. Layer-by-layer coating of aminocellulose and quorum quenching acylase on silver nanoparticles synergistically eradicate bacteria and their biofilms. Advanced Functional Materials, 2020, 30(24): 2001284.
doi: 10.1002/adfm.202001284
[35]   Rémy B, Mion S, Plener L, et al. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Frontiers in Pharmacology, 2018, 9: 203.
doi: 10.3389/fphar.2018.00203 pmid: 29563876
[36]   Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence, 2018, 9(1): 522-554.
doi: 10.1080/21505594.2017.1313372 pmid: 28362216
[37]   Koo H, Allan R N, Howlin R P, et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology, 2017, 15(12): 740-755.
doi: 10.1038/nrmicro.2017.99 pmid: 28944770
[38]   Hu D F, Deng Y Y, Jia F, et al. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano, 2020, 14(1): 347-359.
doi: 10.1021/acsnano.9b05493 pmid: 31887012
[39]   Feng X C, Guo W Q, Zheng H S, et al. Inhibition of biofilm formation by chemical uncoupler, 3,3', 4',5-tetrachlorosalicylanilide (TCS): from the perspective of quorum sensing and biofilm related genes. Biochemical Engineering Journal, 2018, 137: 95-99.
doi: 10.1016/j.bej.2018.05.010
[40]   Puga C H, Rodríguez-López P, Cabo M L, et al. Enzymatic dispersal of dual-species biofilms carrying Listeria monocytogenes and other associated food industry bacteria. Food Control, 2018, 94: 222-228.
doi: 10.1016/j.foodcont.2018.07.017
[41]   Weiss A, Delavenne E, Matias C, et al. Topical niclosamide (ATx201) reduces Staphylococcus aureus colonization and increases Shannon diversity of the skin microbiome in atopic dermatitis patients in a randomized, double-blind, placebo-controlled phase 2 trial. Clinical and Translational Medicine, 2022, 12(5): e790.
doi: 10.1002/ctm2.790 pmid: 35522900
[42]   Barthold L, Heber S, Schmidt C Q, et al. Human α-defensin-6 neutralizes Clostridioides difficile toxins TcdA and TcdB by direct binding. International Journal of Molecular Sciences, 2022, 23(9): 4509.
doi: 10.3390/ijms23094509
[43]   Andersson J A, Peniche A G, Galindo C L, et al. New host-directed therapeutics for the treatment of Clostridioides difficile infection. mBio, 2020, 11(2): e00053-e00020.
[44]   Zhang X C, Gao R R, Liu Y, et al. Anti-virulence activities of biflavonoids from Mesua ferrea L. flower. Drug Discoveries & Therapeutics, 2019, 13(4): 222-227.
[45]   Nakatsuji T, Hata T R, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nature Medicine, 2021, 27(4): 700-709.
doi: 10.1038/s41591-021-01256-2 pmid: 33619370
[1] WANG Man-man,WU Sheng-bo,WU Hao,ZHANG Peng,ZHANG Yu-miao,QIAO Jian-jun,CAIYIN Qing-ge-le. Research Progress on Polyphenol-based Quorum Sensing Interfering[J]. China Biotechnology, 2022, 42(9): 93-104.
[2] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[3] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[4] WU Chun-xu, LU Xue-mei, JIN Xiao-bao, ZHU Jia-yong. Advances in Research on Molecular Design of Cecropin-like Peptides[J]. China Biotechnology, 2016, 36(2): 96-100.
[5] TIAN Bao-yu, MA Rong-qin. Antibiotic Resistances in Environmental Microbiota and Antibiotic Resistome[J]. China Biotechnology, 2015, 35(10): 108-114.
[6] CHEN Jie-mei, ZHANG Can-hui, AI Tian. Study of the Antibacterial Peptides Produced by Bacillus amyloliquefaciens KN-BL-1 and Its Fermented Soybean Meal[J]. China Biotechnology, 2014, 34(10): 61-66.
[7] WU Ru-juan, ZHANG Ri-jun. The Progress of Hybrid Peptides on Design and Biological Activity[J]. China Biotechnology, 2013, 33(9): 94-100.
[8] CHEN Yu-ting, WANG Chang-hai, YAN Xiu-wen, LI Jun-sheng. Antimicrobial Peptides:Design and Application[J]. China Biotechnology, 2013, 33(7): 97-102.
[9] JIANG Huan-huan, AN Xiao-ping, MI Zhi-qiang, TONG Yi-gang. Research Progress in Phage Therapy of Bacterial Infections[J]. China Biotechnology, 2010, 30(12): 116-122.
[10] . Construction of antimicrobial peptide Bactenecin 7 plasmid and its secretary[J]. China Biotechnology, 2009, 29(01): 70-74.
[11] lianjie wang. Research advances in cationic antimicrobial peptides[J]. China Biotechnology, 2008, 28(6): 100-107.
[12] SHI Chun-Lin . Multiple Roles of Antimicrobial Peptides in Host Denfence[J]. China Biotechnology, 2008, 28(4): 82-86.
[13] . The structural parameters-functional activity relationship of alpha-helical antimicrobial peptides[J]. China Biotechnology, 2007, 27(9): 116-119.
[14] . Overexpression of the fusion gene encoding bovine antimicrobial peptides Bac7-Bac5 in Escherichia coli, and purification and antimicrobial activity of the fusion protein[J]. China Biotechnology, 2007, 27(3): 65-70.
[15] . Research on antimicrobial peptides and their function[J]. China Biotechnology, 2007, 27(1): 115-118.