Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (1): 115-126    DOI: 10.13523/j.cb.2207051
    
Progress and Application of Cold-active Protease
HAO Man,SHI Chao-shuo,HUI Wei,LI Xiang-xun,ZHANG Tong-tong,LIU Fu-feng,LU Fu-ping,ZHANG Hui-tu**()
College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
Download: HTML   PDF(1659KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cold-active protease is a kind of hydrolytic enzyme that can hydrolyze large proteins into small peptides or amino acids at low temperatures. It is generally produced by microorganisms living at low temperatures and has high catalytic activity at lower ambient temperatures. Therefore, it can avoid waste of resources caused by the rise in temperature in the application process and the special requirements for equipment, and shows unique advantages and commercial value in the application fields of washing, food processing and medical treatment. In this paper, different kinds and sources of microbial cryopinases are reviewed, and their catalytic properties, structural characteristics, current application and future development prospects are analyzed and summarized based on existing research results, aiming to promote the development and application of new cryopinases.



Key wordsCold-active protease      Microorganism      Catalytic property      Architectural feature      Industrial application     
Received: 25 July 2022      Published: 14 February 2023
ZTFLH:  Q814  
Cite this article:

HAO Man, SHI Chao-shuo, HUI Wei, LI Xiang-xun, ZHANG Tong-tong, LIU Fu-feng, LU Fu-ping, ZHANG Hui-tu. Progress and Application of Cold-active Protease. China Biotechnology, 2023, 43(1): 115-126.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207051     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I1/115

Fig.1 Research flow of cold-active protease
Fig.2 Microorganism producing cold-active protease
菌种 分子量/kDa 最适作用温度/°C 最适pH 最适作用底物 参考文献
Escherichia freundii 55 25 10.0 - [6]
Pseudomonas fluorescens 47 35~40 8.0 乳蛋白、酪蛋白 [36-37]
Candida humicola 36 37 1.0~2.0 牛血清白蛋白 [33]
Vibrio sp. 35 40 8.5~9.0 - [38]
Alteromonas haloplanktis 74~76 20 8.0~9.0 - [39]
Flavobacterium balustinum 70 40 7.0~9.0 - [40]
Azospirillum sp. 48.6 40 8.5 - [41]
Leucosporidium antarcticum 34.4 25 6.7~7.1 - [42]
Flavobacterium psychrophilum 62 24 6.0~7.0 - [43]
Klebsiella oxytoca - 37 5.0~7.0 - [44]
Clostridium sp. 46 37 7.0 - [34]
Colwellia sp. 60 35 8.0~9.0 - [45]
Aspergillus ustus 32 45 9.0 - [19]
Exiguobacterium sp. 36 40 8.0 - [46]
Curtobacterium luteum 115 20 7.0 - [47]
Trichoderma atroviride 24 25 6.2 - [48]
Pseudomonas lundensis 46 30 10.4 - [49]
Serratia marcescens 56 40 8.0 - [50]
菌种 分子量/kDa 最适作用温度/°C 最适pH 最适作用底物 参考文献
Stenotrophomonas maltophilia 75 20 10.0 - [51]
Bacillus sp. - 40 7.4 - [52]
Stenotrophomonas sp. 55 15 10.0 - [53]
Acinetobacter sp. 35 40 9.0 酪蛋白、牛血清白蛋白 [54]
Halobacillus sp. 35 30 8.0 FA-Gly-Phe/Leu-NH2 [55]
Pseudoalteromonas sp. 34.6 25~35 8.0~9.0 Succ-AAPF-pNa [10]
Penicillium nalgiovense 45.2 35 8.0 - [20]
Planococcus sp. 35.6 35 10.0 - [13]
Lysobacter sp. - 40 9.0 偶氮酪蛋白 [17]
Chryseobacterium sp. - 10 7.0~8.0 酪蛋白 [16]
Planococcus sp. 43 35 10.0 - [56]
Pseudoalteromonas arctica - 30 9.0 - [57]
Bacillus sp. 62 20 9.0 - [18]
Table 1 The catalytic properties of cold-active protease
Fig.3 Subtilisin S41 structure
低温蛋白酶 均方根偏差 模板建模评分 等效残基对 参考覆盖率/% 目标覆盖率/%
2GKO与3WHI 2.43 0.71 271 88 76
2GKO与5YL7 2.82 0.74 280 91 83
2GKO与1SH7 1.96 0.81 266 86 95
Table 2 Alignment of cold-active protease structure
Fig.4 Structural comparison of four cold-active proteases (a) Four cold-active proteases polymer chains (b) Complete structure diagram of four cold-active proteases
Fig.5 Methods for de novo protein design[66] (a) Protein sequence space diagram (b) Protein structure prediction, fixed frame design and design from scratch methods
微生物 蛋白酶类型 应用领域 参考文献
Acinetobacter sp. 丝氨酸蛋白酶 洗涤剂添加剂 [54]
Arsukibacterium ikkense - 乳制品和其他功能性食品 [11]
Bacillus licheniformis 丝氨酸蛋白酶 组织解离 [75]
Bacillus sp. 金属蛋白酶 适冷性洗涤剂添加剂、环境保护、饲料添加剂 [52,81]
Bacillus subtilis 碱性蛋白酶 生物修复 [82]
Bacillus subtilis 丝氨酸蛋白酶 适冷性洗涤剂添加剂 [18]
Chryseobacterium sp. 丝氨酸蛋白酶 肉类加工 [16]
Enterococcus faecalis 金属蛋白酶 保健品 [83]
Exiguobacterium sp. - 洗涤剂添加剂 [46]
Flavobacterium limicola - 淡水沉积物矿化 [84]
微生物 蛋白酶类型 应用领域 参考文献
Pedobacter cryoconitis 金属蛋白酶 浅水生物修复 [85]
Penicillin nalgiovense 碱性蛋白酶 肉类加工 [20]
Planococcus sp. 丝氨酸蛋白酶 适冷性洗涤剂添加剂、鱼露发酵 [56,67]
Pseudomonas aeruginosa 碱性蛋白酶 洗涤 [12]
Pseudomonas sp. - 去除人发磷质层 [86]
Pseudoalteromonas sp. 丝氨酸蛋白酶 肉类嫩化、低温食品加工、皮革脱毛、海参中活性物质提取 [74,87-88]
Pseudoalteromonas arctica - 冷水洗涤 [57]
Serratia marcescens 金属蛋白酶 洗涤剂添加剂 [50]
Sphingomonas paucimobilis - 洗涤剂、食品分子生物学 [89]
Stenotrophomonas sp. 碱性蛋白酶 洗涤 [53]
Table 3 Application of cold-active protease
[1]   Razzaq A, Shamsi S, Ali A, et al. Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 2019, 7: 110.
doi: 10.3389/fbioe.2019.00110 pmid: 31263696
[2]   Kasana R C. Proteases from psychrotrophs: an overview. Critical Reviews in Microbiology, 2010, 36(2): 134-145.
doi: 10.3109/10408410903485525 pmid: 20047457
[3]   Bezerra V H S, Cardoso S L, Fonseca-Bazzo Y, et al. Protease produced by endophytic fungi: a systematic review. Molecules, 2021, 26(22): 7062.
doi: 10.3390/molecules26227062
[4]   Al-Maqtari Q A, Al-Ansi W, Mahdi A A. Cold-active enzymes and their applications in industrial fields-a review. International Journal of Research in Agricultural Sciences, 2019, 6(4): 2348-3997.
[5]   陈秀兰, 张玉忠, 高培基. 适冷微生物及其适冷机制研究进展. 中国生物工程杂志, 2003, 23(2): 86-90.
[5]   Chen X L, Zhang Y Z, Gao P J. Progress in cold-adapted microorganisms and their cold-adapted mechanism. China Biotechnology, 2003, 23(2): 86-90.
[6]   Nakajima M, Mizusawa K, Yoshida F. Purification and properties of an extracellular proteinase of psychrophilic Escherichia freundii. European Journal of Biochemistry, 1974, 44(1): 87-96.
pmid: 4212288
[7]   Kim E H, Cho K H, Lee Y M, et al. Diversity of cold-active protease-producing bacteria from arctic terrestrial and marine environments revealed by enrichment culture. Journal of Microbiology (Seoul, Korea), 2010, 48(4): 426-432.
[8]   Kim D, Park H J, Lee Y M, et al. Screening for cold-active protease-producing bacteria from the culture collection of polar microorganisms and characterization of proteolytic activities. The Korean Joural of Microbiology, 2010, 46(1): 73-79.
[9]   Yadav A N, Sachan S G, Verma P, et al. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. Journal of Basic Microbiology, 2016, 56(3): 294-307.
doi: 10.1002/jobm.201500230 pmid: 26933936
[10]   Olivera N L, Sequeiros C, Nievas M L. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles: Life Under Extreme Conditions, 2007, 11(3): 517-526.
doi: 10.1007/s00792-007-0064-3
[11]   de Gobba C, Tompa G, Otte J. Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacterium ikkense. Food Chemistry, 2014, 165: 205-215.
doi: 10.1016/j.foodchem.2014.05.082
[12]   Hao J H, Sun M. Purification and characterization of a cold alkaline protease from a psychrophilic Pseudomonas aeruginosa HY1215. Applied Biochemistry and Biotechnology, 2015, 175(2): 715-722.
doi: 10.1007/s12010-014-1315-2
[13]   Mykytczuk N C S, Foote S J, Omelon C R, et al. Bacterial growth at -15℃; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. The ISME Journal, 2013, 7(6): 1211-1226.
doi: 10.1038/ismej.2013.8
[14]   Han S J, Park H, Kim S, et al. Enhanced production of protease by Pseudoalteromonas arctica PAMC 21717 via statistical optimization of mineral components and fed-batch fermentation. Preparative Biochemistry & Biotechnology, 2016, 46(4): 328-335.
[15]   权淑静, 马焕, 刘德海, 等. 产低温蛋白酶海洋菌筛选、鉴定及性质的初步研究. 河南科学, 2017, 35(1): 78-82.
[15]   Quan S J, Ma H, Liu D H, et al. Screening and enzymatic properties of cold-active protease marine strain. Henan Science, 2017, 35(1): 78-82.
[16]   Mageswari A, Subramanian P, Chandrasekaran S, et al. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp. Food Chemistry, 2017, 217: 18-27.
doi: 10.1016/j.foodchem.2016.08.064
[17]   Pereira J Q, Ambrosini A, Passaglia L M P, et al. A new cold-adapted serine peptidase from Antarctic Lysobacter sp. A03: insights about enzyme activity at low temperatures. International Journal of Biological Macromolecules, 2017, 103: 854-862.
doi: 10.1016/j.ijbiomac.2017.05.142
[18]   Furhan J, Awasthi P, Sharma S. Biochemical characterization and homology modelling of cold-active alkophilic protease from Northwestern Himalayas and its application in detergent industry. Biocatalysis and Agricultural Biotechnology, 2019, 17: 726-735.
doi: 10.1016/j.bcab.2019.01.028
[19]   Damare S, Raghukumar C, Muraleedharan U D, et al. Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme and Microbial Technology, 2006, 39(2): 172-181.
doi: 10.1016/j.enzmictec.2006.03.032
[20]   Papagianni M, Sergelidis D. Purification and biochemical characterization of a novel alkaline protease produced by Penicillium nalgiovense. Applied Biochemistry and Biotechnology, 2014, 172(8): 3926-3938.
doi: 10.1007/s12010-014-0824-3 pmid: 24585382
[21]   Gao B, He L, Wei D Z, et al. Identification and magnetic immobilization of a pyrophilous aspartic protease from Antarctic psychrophilic fungus. Journal of Food Biochemistry, 2018, 42(6): e12691.
doi: 10.1111/jfbc.12691
[22]   Białkowska A M, Szulczewska K M, Krysiak J, et al. Genetic and biochemical characterization of yeasts isolated from Antarctic soil samples. Polar Biology, 2017, 40(9): 1787-1803.
doi: 10.1007/s00300-017-2102-7
[23]   姜春宇, 张媱, 孙燕飞, 等. 产低温蛋白酶酵母菌株的筛选及发酵培养基优化. 中国酿造, 2018, 37(11): 45-50.
[23]   Jiang C Y, Zhang Y, Sun Y F, et al. Screening of low-temperature protease-producing yeast and optimization of fermentation medium. China Brewing, 2018, 37(11): 45-50.
[24]   Białkowska A M, Krysiak J, Florczak T, et al. The psychrotrophic yeast Sporobolomyces roseus LOCK 1119 as a source of a highly active aspartic protease for the in vitro production of antioxidant peptides. Biotechnology and Applied Biochemistry, 2018, 65(5): 726-738.
doi: 10.1002/bab.1656 pmid: 29569743
[25]   Daskaya-Dikmen C, Karbancioglu-Guler F, Ozcelik B. Cold active pectinase, amylase and protease production by yeast isolates obtained from environmental samples. Extremophiles: Life Under Extreme Conditions, 2018, 22(4): 599-606.
doi: 10.1007/s00792-018-1020-0
[26]   Zhang H T, Mu H Y, Mo Q S, et al. Gene cloning, expression and characterization of a novel cold-adapted protease from Planococcus sp. Journal of Molecular Catalysis B: Enzymatic, 2016, 130: 1-8.
doi: 10.1016/j.molcatb.2016.04.002
[27]   Wang Q F, Hou Y H, Xu Z, et al. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ 341 with response surface methodology. Bioresource Technology, 2008, 99(6): 1926-1931.
doi: 10.1016/j.biortech.2007.03.028
[28]   潘延云, 张贺迎, 周艳芬, 等. 原生质体融合构建高产碱性蛋白酶工程菌. 应用与环境生物学报, 2002, 8(4): 422-426.
[28]   Pan Y Y, Zhang H Y, Zhou Y F, et al. Construction of engineering strain producing with alkaline protease protoplast fusion. Chinese Journal of Applied and Environmental Biology, 2002, 8(4): 422-426.
[29]   张晓燕. 产低温蛋白酶菌株的筛选及酶学特性研究. 乌鲁木齐: 新疆农业大学, 2014.
[29]   Zhang X Y. Screening of strains producing low temperature protease and study on the enzymatic characteristics of this enzyme. Urumqi: Xinjiang Agricultural University, 2014.
[30]   朱非, 王珊, 周培瑾. 低温酶冷适应的分子机制及其在生物技术中的应用. 微生物学报, 2002, 42(5): 640-644.
[30]   Zhu F, Wang S, Zhou P J. Molecular mechanisms of cold-adapted enzymes to cold environment and their application in biotechnology industry. Acta Microbiologica Sinica, 2002, 42(5): 640-644.
[31]   Joshi G K, Kumar S, Sharma V. Production of moderately halotolerant, SDS stable alkaline protease from Bacillus cereus MTCC 6840 isolated from lake Nainital, Uttaranchal state, India. Brazilian Journal of Microbiology, 2007, 38(4): 773-779.
doi: 10.1590/S1517-83822007000400034
[32]   Alam S I, Dube S, Agarwal M K, et al. Purification and characterization of an extracellular protease produced by psychrotolerant Clostridium sp. LP3 from lake sediment of Leh, India. Canadian Journal of Microbiology, 2006, 52(12): 1238-1246.
doi: 10.1139/w06-089
[33]   Ray M K, Devi K U, Kumar G S, et al. Extracellular protease from the Antarctic yeast Candida humicola. Applied and Environmental Microbiology, 1992, 58(6): 1918-1923.
doi: 10.1128/aem.58.6.1918-1923.1992 pmid: 1622266
[34]   Alam S I, Dube S, Reddy G S N, et al. Purification and characterisation of extracellular protease produced by Clostridium sp. from schirmacher oasis, Antarctica. Enzyme and Microbial Technology, 2005, 36(5-6): 824-831.
doi: 10.1016/j.enzmictec.2005.01.011
[35]   Huston A L, Methe B, Deming J W. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Applied and Environmental Microbiology, 2004, 70(6): 3321-3328.
doi: 10.1128/AEM.70.6.3321-3328.2004
[36]   Patel T R, Jackman D M, Bartlett F M. Heat-stable protease from Pseudomonas fluorescens T16: purification by affinity column chromatography and characterization. Applied and Environmental Microbiology, 1983, 46(2): 333-337.
doi: 10.1128/aem.46.2.333-337.1983 pmid: 6414369
[37]   Hamamoto T, Kaneda M, Horikoshi K, et al. Characterization of a protease from a psychrotroph, Pseudomonas fluorescens 114. Applied and Environmental Microbiology, 1994, 60(10): 3878-3880.
doi: 10.1128/aem.60.10.3878-3880.1994 pmid: 16349422
[38]   Hamamoto T. Characterization of a protease from psychrophilic Vibrio sp. strain 5709. Journal of Marine Biotechnology, 1995, 2: 219-222.
[39]   Suzuki S, Odagami T. Low-temperature-active thiol protease from marine bacterium Alteromonas haloplanktis. The Journal of Marine Biotechnology, 1997, 5(4): 230-233.
[40]   Morita Y, Hasan Q, Sakaguchi T, et al. Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104. Applied Microbiology and Biotechnology, 1998, 50(6): 669-675.
doi: 10.1007/s002530051349 pmid: 9891929
[41]   Oh K H, Seong C S, Lee S W, et al. Isolation of a psychrotrophic Azospirillum sp. and characterization of its extracellular protease. FEMS Microbiology Letters, 1999, 174(1): 173-178.
pmid: 10234836
[42]   Turkiewicz M, Pazgier M, Kalinowska H, et al. A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles, 2003, 7(6): 435-442.
pmid: 12845553
[43]   Secades P, Alvarez B, Guijarro J A. Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiology Letters, 2003, 226(2): 273-279.
pmid: 14553922
[44]   Tondo E C, Lakus F R, Oliveira F A, et al. Identification of heat stable protease of Klebsiella oxytoca isolated from raw milk. Letters in Applied Microbiology, 2004, 38(2): 146-150.
pmid: 14746547
[45]   Wang Q F, Miao J L, Hou Y H, et al. Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotechnology Letters, 2005, 27(16): 1195-1198.
doi: 10.1007/s10529-005-0016-x
[46]   Kasana R C, Yadav S K. Isolation of a psychrotrophic Exiguobacterium sp. SKPB 5 (MTCC 7803) and characterization of its alkaline protease. Current Microbiology, 2007, 54(3): 224-229.
doi: 10.1007/s00284-006-0402-1
[47]   Kuddus M, Ramteke P W. A cold-active extracellular metalloprotease from Curtobacterium luteum (MTCC 7529): enzyme production and characterization. The Journal of General and Applied Microbiology, 2008, 54(6): 385-392.
doi: 10.2323/jgam.54.385
[48]   Kredics L, Terecskei K, Antal Z, et al. Purification and preliminary characterization of a cold-adapted extracellular proteinase from Trichoderma atroviride. Acta Biologica Hungarica, 2008, 59(2): 259-268.
doi: 10.1556/ABiol.59.2008.2.11 pmid: 18637564
[49]   Yang C Y, Wang F, Hao J H, et al. Identification of a proteolytic bacterium, HW08, and characterization of its extracellular cold-active alkaline metalloprotease Ps5. Bioscience, Biotechnology, and Biochemistry, 2010, 74(6): 1220-1225.
doi: 10.1271/bbb.100011
[50]   Tariq A L, Reyaz A L, Prabakaran J J. Purification and characterization of 56 KDa cold active protease from Serratia marcescens. African Journal of Microbiology Research, 2011, 5(32): 5841-5847.
[51]   Kuddus M, Ramteke P W. Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. African Journal of Microbiology Research, 2011, 5(7): 809-816.
doi: 10.5897/AJMR10.806
[52]   Park I, Cho J. Production of an extracellular protease by an Antarctic bacterial isolate (Bacillus sp. JSP1) as a potential feed additive. Revista Colombiana de Ciencias Pecuarias, 2011, 24(1): 3-10.
[53]   Saba I, Qazi P H, Rather S A, et al. Purification and characterization of a cold active alkaline protease from Stenotrophomonas sp., isolated from Kashmir, India. World Journal of Microbiology & Biotechnology, 2012, 28(3): 1071-1079.
doi: 10.1007/s11274-011-0905-1
[54]   Salwan R, Kasana R C. Purification and characterization of an extracellular low temperature-active and alkaline stable peptidase from psychrotrophic Acinetobacter sp. MN 12 MTCC (10786). Indian Journal of Microbiology, 2013, 53(1): 63-69.
doi: 10.1007/s12088-012-0344-1 pmid: 24426080
[55]   Yang J, Li J, Mai Z M, et al. Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089. Journal of Bioscience and Bioengineering, 2013, 115(6): 628-632.
doi: 10.1016/j.jbiosc.2012.12.013
[56]   Chen K, Mo Q S, Liu H, et al. Identification and characterization of a novel cold-tolerant extracellular protease from Planococcus sp. CGMCC 8088. Extremophiles: Life Under Extreme Conditions, 2018, 22(3): 473-484.
doi: 10.1007/s00792-018-1010-2
[57]   Park H J, Lee C W, Kim D, et al. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: structural adaptations to cold and functional analysis of a laundry detergent enzyme. PLoS One, 2018, 13(2): e0191740.
doi: 10.1371/journal.pone.0191740
[58]   Rueda M, Ferrer-Costa C, Meyer T, et al. A consensus view of protein dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(3): 796-801.
[59]   Kuddus M, Arif J M, Ramteke P W. Structural adaptation and biocatalytic prospective of microbial cold-active α-amylase. African Journal of Microbiology Research, 2012, 6(2): 206-213.
[60]   Al-Ghanayem A A, Joseph B. Current prospective in using cold-active enzymes as eco-friendly detergent additive. Applied Microbiology and Biotechnology, 2020, 104(7): 2871-2882.
doi: 10.1007/s00253-020-10429-x pmid: 32037467
[61]   Gatti-Lafranconi P, Natalello A, Rehm S, et al. Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation. Journal of Molecular Biology, 2010, 395(1): 155-166.
doi: 10.1016/j.jmb.2009.10.026 pmid: 19850050
[62]   Davail S, Feller G, Narinx E, et al. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA41. Journal of Biological Chemistry, 1994, 269(26): 17448-17453.
pmid: 8021248
[63]   莫清珊. 新型低温蛋白酶基因的克隆表达及酶学性质研究. 天津: 天津科技大学, 2014.
[63]   Mo Q S. Gene cloning, expression and characterization of novel cold-adapted proteases. Tianjin: Tianjin University of Science & Technology, 2014.
[64]   周冠宇, 李江华, 彭政, 等. 定点突变提高枯草芽孢杆菌角蛋白酶的低温催化活性. 微生物学通报, 2022, 49(1): 1-13.
[64]   Zhou G Y, Li J H, Peng Z, et al. Improving the low-temperature activity of Bacillus subtilis keratinase by site-directed mutagenesis. Microbiology China, 2022, 49(1): 1-13.
[65]   王朋辉, 王伟贤, 曾晖, 等. 碱性蛋白酶洗涤稳定性提高的研究进展. 日用化学工业, 2022, 52(2): 180-189.
[65]   Wang P H, Wang W X, Zeng H, et al. Research progress in improving the washing performance of alkaline protease. China Surfactant Detergent & Cosmetics, 2022, 52(2): 180-189.
[66]   Huang P S, Boyken S E, Baker D. The coming of age of de novo protein design. Nature, 2016, 537(7620): 320-327.
doi: 10.1038/nature19946
[67]   王雄健. 洗涤剂用蛋白酶的发酵及造粒技术研究. 太原: 山西大学, 2018.
[67]   Wang X J. Study on fermentation and granulation technology of detergent protease. Taiyuan: Shanxi University, 2018.
[68]   Joshi S, Satyanarayana T. Biotechnology of cold-active proteases. Biology, 2013, 2(2): 755-783.
doi: 10.3390/biology2020755
[69]   Park H J, Han S J, Yim J H, et al. Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents. Korean Journal of Microbiology, 2018, 54(1): 60-68.
[70]   周晶, 袁丽, 高瑞昌. 产低温蛋白酶动性球菌的筛选及其在低盐鱼露发酵中的应用. 食品科学, 2021, 42(8): 122-128.
[70]   Zhou J, Yuan L, Gao R C. Screening of low-temperature protease-producing Planococcus and its application in low-salt fish sauce fermentation. Food Science, 2021, 42(8): 122-128.
[71]   陈飞, 吴生文, 张志刚. 蛋白酶在酒类生产中的应用现状. 酿酒科技, 2011, 199(1): 82-84.
[71]   Chen F, Wu S W, Zhang Z G. Present status of the application of protease in wine production. Liquor-making Science & Technology, 2011, 199(1): 82-84.
[72]   宋常欣, 陈玲. 啤酒非生物稳定剂的应用和比较. 食品与发酵工业, 2001, 27(4): 79-81.
[72]   Song C X, Chen L. Application and comparison of abiotic stabilizers for beer. Food and Fermentation Industries, 2001, 27(4): 79-81.
[73]   Hamid B, Mohiddin F A. Cold-active enzymes in food processing. Enzymes in Food Technology, 2018, 19: 383-400.
[74]   张春鸽. 细菌低温蛋白酶及其在海参活性物质提取中的初步研究. 哈尔滨: 哈尔滨工业大学, 2013.
[74]   Zhang C G. Low temperautre bacteria proteasa and its preliminary study on extraction of sea cucumber active substances. Harbin: Harbin Institute of Technology, 2013.
[75]   Adam M, Potter A S, Potter S S. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development (Cambridge, England), 2017, 144(19): 3625-3632.
[76]   Craik C S, Page M J, Madison E L. Proteases as therapeutics. The Biochemical Journal, 2011, 435(1): 1-16.
doi: 10.1042/BJ20100965
[77]   Mekkes J R, le Poole I C, Das P K, et al. Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: a double-blind, placebo-controlled study in a standardized animal wound model. Wound Repair and Regeneration, 1998, 6(1): 50-57.
pmid: 9776850
[78]   Hellgren K. Krill enzymes (Krillase®) an important factor to improve oral hygiene. Oral Health Care - Pediatric, Research, Epidemiology and Clinical Practices, 2012. DOI: 10.5772/22056.
doi: 10.5772/22056
[79]   Hilmarsson H, Stefansson B, Bjarnason J B, et al. Virucidal activities of penzyme against herpes simplex veiru type 1 (poster 928). European Cooperation in Science and Technology, 2010, 928: 2-4.
[80]   Moran A J, Hills M, Gunton J, et al. Heat-labile proteases in molecular biology applications. FEMS Microbiology Letters, 2001, 197(1): 59-63.
pmid: 11287147
[81]   Furhan J, Salaria N, Jabeen M, et al. Partial purification and characterisation of cold-active metalloprotease by Bacillus sp. AP 1 from Apharwat peak, Kashmir. Pakistan Journal of Biotechnology, 2019, 16(1): 47-54.
doi: 10.34016/pjbt.2019.16.1.8
[82]   Baghel V S, Tripathi R D, Ramteke P W, et al. Psychrotrophic proteolytic bacteria from cold environment of Gangotri glacier, Western Himalaya, India. Enzyme and Microbial Technology, 2005, 36(5-6): 654-659.
doi: 10.1016/j.enzmictec.2004.09.005
[83]   Yuan Q Z, Hayashi A, Kitamura Y, et al. Purification and characterization of cold-adapted metalloprotease from deep sea water lactic acid bacteria Enterococcus faecalis TN-9. International Journal of Biology, 2009, 1(2): 12.
[84]   Tamaki H, Hanada S, Kamagata Y, et al. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 2): 519-526.
doi: 10.1099/ijs.0.02369-0
[85]   Margesin R, Dieplinger H, Hofmann J, et al. A cold-active extracellular metalloprotease from Pedobacter cryoconitis-production and properties. Research in Microbiology, 2005, 156(4): 499-505.
pmid: 15862448
[86]   郝建华, 刘均忠, 王芳, 等. 海洋低温蛋白酶MP去除人发鳞质层的研究. 毛纺科技, 2013, 41(2): 6-10.
[86]   Hao J H, Liu J Z, Wang F, et al. Study of removinging npophysis layer of hair with marine cold-adapted protease MP. Wool Textile Journal, 2013, 41(2): 6-10.
[87]   He H L, Chen X L, Li J W, et al. Taste improvement of refrigerated meat treated with cold-adapted protease. Food Chemistry, 2004, 84(2): 307-311.
doi: 10.1016/S0308-8146(03)00242-5
[88]   Zambare V, Nilegaonkar S, Kanekar P. A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. New Biotechnology, 2011, 28(2): 173-181.
doi: 10.1016/j.nbt.2010.10.002
[89]   Turkiewicz M, Gromek E, Kalinowska H, et al. Biosynthesis and properties of an extracellular metalloprotease from the Antarctic marine bacterium Sphingomonas paucimobilis. Journal of Biotechnology, 1999, 70(1-3): 53-60.
doi: 10.1016/S0168-1656(99)00057-7
[1] HUANG Ming-zhu,YAO Kun,SONG Zhuo-lin,ZHANG Hao,LIU Bin,CHEN Xue-lan. Advances in Cell Surface Display Technology in Environmental Remediation[J]. China Biotechnology, 2022, 42(9): 105-115.
[2] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.
[3] LIU Jia-meng,LI Xue-ying,LIU Ye-xue,WANG Wen-hang,LI Qing-gang,LU Fu-ping,LI Yu. Research Progress on Microbial Synthesis of Heme Using 5-Aminolevulinic Acid as the Sole Precursor[J]. China Biotechnology, 2022, 42(3): 99-109.
[4] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[5] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[6] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[7] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[8] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[9] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[10] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[11] CAO Bi-pu,MIAO Li-hua,GUO Bao-yan,HE Li-ping. The Feasibility Analysis That Nanopore Sequencing Technology Is Applied to Food Microbiological Detection[J]. China Biotechnology, 2018, 38(12): 91-98.
[12] Zheng-san ZUO,Dong-sheng GUO,Xiao-jun JI,Ping SONG,He HUANG. Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review[J]. China Biotechnology, 2018, 38(11): 66-75.
[13] SHI Gui-qin, ZHOU Wen-shan, REN Fei. Research Progress on Increasing SOD Production by Microorganism Fermentation[J]. China Biotechnology, 2017, 37(4): 115-124.
[14] WU Lin-huan, LU Zhen-ming, GONG Jin-song, SHI Jin-song, XU Zheng-hong. Integrating Distributed Heterogeneous Food Microorganism Data by Semantic Web Technology[J]. China Biotechnology, 2017, 37(3): 124-132.
[15] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.