Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 88-95    DOI: 10.13523/j.cb.2107010
Orginal Article     
Optimized Yeast Expression of Canine Interferon-α Using a Combined Strategy
LI Ding1,2,3,LI Lan1,2,3,AN Yun-fei4,BI Zhen-wei5,YU Xiao-ming1,2,3,CHEN Jin1,2,3,ZHENG Qi-sheng1,2,3,**()
1 Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
2 Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
3 Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
4 College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
5 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
Download: HTML   PDF(1994KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Canine interferon-α(CaIFN) was expressed in Pichia pastoris in the previous studies, which had high biological activity and relatively low yield. Therefore, increasing the yield of recombinant protein is the key task to promote the application of CaIFN. Yeast transformants containing 1, 2, 4, 6, and 8 copies of CaIFN gene were generated, and the yield of KM-6CaIFN was the highest, which was 200.6% higher than that of KM-1CaIFN. 8 molecular chaperones were co-expressed with CaIFN, and the Hac protein could increase the target protein yield of KM-6CaIFN and KM-8CaIFN by 32.1% and 113.1%, respectively. More copies of CaIFN were integrated into KM-8CaIFN-Hac strain. SDS-PAGE analysis showed that the yield of KM-12CaIFN-Hac was 1.33 times that of KM-8CaIFN-Hac, and 5.61 times that of KM-1CaIFN, respectively. By comparing protein bands with serially dilution BSA, the yield of KM-12CaIFN-Hac was estimated to be about 581 mg/L, which is the highest value in P. pastoris reported so far.



Key wordsCaIFN      Pichia pastoris      Recombinant protein yield      Multi-copy      Molecular chaperones     
Received: 03 July 2021      Published: 03 March 2022
ZTFLH:  Q819  
Corresponding Authors: Qi-sheng ZHENG     E-mail: njcvc1302@163.com
Cite this article:

LI Ding,LI Lan,AN Yun-fei,BI Zhen-wei,YU Xiao-ming,CHEN Jin,ZHENG Qi-sheng. Optimized Yeast Expression of Canine Interferon-α Using a Combined Strategy. China Biotechnology, 2022, 42(1/2): 88-95.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2107010     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/88

Primers Sequence (5'-3') PCR detection
qGAP-F CCAGCGGCAACAAGATCAAC Real-time
qGAP-R CTCCTCGTTGACACCGACAA quantitative PCR
qIFN-F GTTCTGTCCAGATACTTCTTC
qIFN-R GGAGAGTGATTTCTATCTTGC
Table 1 The primers used in this study
Molecular chaperone Accession number
Hac* PAS_chr1-1_0381
Fhl PAS_chr4_0980
INO PAS_chr2-2_0113
YDJ PAS_chr2-2_0066
SSA4 PAS_chr3_0230
BiP PAS_chr2-1_0140
PDI PAS_chr4_0844
Erv PAS_chr2-1_0287
Table 2 The molecular chaperones used in this study
Fig.1 SDS-PAGE analysis (a) and Western blot analysis (b) of supernatant of KM-1CaIFN Lane M: Protein molecular weight marker; Lane 1: Supernatant of KM-1CaIFN; Lane 2: Endo Hf-treated supernatant of KM-1CaIFN. 10 μL sample was loaded for each lane
Fig.2 Verification of recombinant expression vectors Lane M: DNA molecular weight marker; Lane 1: pMCO-AOXα-CaIFN; Lane 2: pMCO-AOXα-2CaIFN; Lane 3: pMCO-AOXα-4CaIFN; Lane 4: pMCO-AOXα-6CaIFN; Lane 5: pMCO-AOXα-8CaIFN
Strains Average copy number of CaIFN*
KM-1CaIFN 1
KM-2CaIFN 1.95 ± 0.26
KM-4CaIFN 3.79 ± 0.13
KM-6CaIFN 5.77 ± 0.22
KM-8CaIFN 7.64 ± 0.15
KM-12CaIFN-Hac 11.42 ± 0.53
KM-14CaIFN-Hac 13.13 ± 0.47
KM-16CaIFN-Hac 14.79 ± 0.71
Table 3 The copy number analysis of the yeast transformants
Fig.3 Effect of gene copy number on CaIFN production (a) SDS-PAGE analysis of supernatants of yeast transformants (b)Semi-quantitative analysis Lane M: Protein molecular weight marker; Lane 1: KM-1CaIFN; Lane 2: KM-2CaIFN; Lane 3: KM-4CaIFN; Lane 4: KM-6CaIFN; Lane 5: KM-8CaIFN. 10 μL sample was loaded for each lane
Fig.4 Effect of co-expressing molecular chaperones on CaIFN production in KM-6CaIFN strain (a) SDS-PAGE analysis of supernatants of yeast transformants (b)Semi-quantitative analysis Lane M: Protein molecular weight marker; Lane 1: KM-6CaIFN; Lane 2: KM-6CaIFN-Hac; Lane 3: KM-6CaIFN-Fhl; Lane 4: KM-6CaIFN-INO; Lane 5: KM-6CaIFN-YDJ; Lane 6: KM-6CaIFN-SSA4; Lane 7: KM-6CaIFN-BiP; Lane 8: KM-6CaIFN-PDI; Lane 9: KM-6CaIFN-Erv. 10 μL sample was loaded for each lane
Fig.5 Effect of co-expressing molecular chaperones on CaIFN production in KM-8CaIFN strain (a) SDS-PAGE analysis of supernatants of yeast transformants (b)Semi-quantitative analysis Lane M: Protein molecular weight marker; Lane 1: KM-8CaIFN; Lane 2: KM-8CaIFN-Hac; Lane 3: KM-8CaIFN-Fhl; Lane 4: KM-8CaIFN-INO; Lane 5: KM-8CaIFN-YDJ; Lane 6: KM-8CaIFN-SSA4; Lane 7: KM-8CaIFN-BiP; Lane 8: KM-8CaIFN-PDI; Lane 9: KM-8CaIFN-Erv. 10 μL sample was loaded for each lane
Fig.6 Effect of increasing gene copy number on CaIFN production in the strains co-expressing Hac protein (a) SDS-PAGE analysis of supernatants of yeast transformants (b)Semi-quantitative analysis Lane M: Protein molecular weight marker; Lane 1: KM-1CaIFN; Lane 2: KM-6CaIFN; Lane 3: KM-6CaIFN-Hac; Lane 4: KM-8CaIFN; Lane 5: KM-8CaIFN-Hac; Lane 6: KM-12CaIFN-Hac; Lane 7: KM-14CaIFN-Hac; Lane 8: KM-16CaIFN-Hac. 10 μL sample was loaded for each lane
Fig.7 Quantification of CaIFN protein in the supernatant of KM-1CaIFN and KM-12CaIFN-Hac strain Lane M: Protein molecular weight marker; Lane 1-7: Serially diluted BSA at 25, 50, 100, 200, 400, 600, 800 mg/L; Lane 8: KM-1CaIFN; Lane 9: KM-12CaIFN-Hac. 20 μL sample was loaded for each lane in the SDS-PAGE assay
[1]   昝芳, 白海霞, 崔君. 天津地区犬常见传染病的调查及防控措施. 天津农学院学报, 2017, 24(4):90-93.
[1]   Zan F, Bai H X, Cui J. Investigation and prevention control measures of common infectious diseases in canine in Tianjin area. Journal of Tianjin Agricultural University, 2017, 24(4):90-93.
[2]   Borden E C. Interferons: rationale for clinical trials in neoplastic disease. Annals of Internal Medicine, 1979, 91(3):472.
pmid: 382941
[3]   Tompkins W A. Immunomodulation and therapeutic effects of the oral use of interferon-alpha: mechanism of action. Journal of Interferon & Cytokine Research, 1999, 19(8):817-828.
[4]   Carvalho O V, Saraiva G L, Ferreira C G T, et al. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus. Canadian Journal of Veterinary Research, 2014, 78(4):283-289.
[5]   Werten M W, van den Bosch T J, Wind R D, et al. High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast (Chichester, England), 1999, 15(11):1087-1096.
doi: 10.1002/(ISSN)1097-0061
[6]   Li D, Zhang B, Li S T, et al. A novel vector for construction of markerless multicopy overexpression transformants in Pichia pastoris. Frontiers in Microbiology, 2017, 8:1698.
doi: 10.3389/fmicb.2017.01698
[7]   曹瑞兵, 王艳, 魏建超, 等. 犬α1干扰素在毕赤酵母中的分泌表达及其抗病毒活性研究. 南京农业大学学报, 2008, 31(4):107-112.
[7]   Cao R B, Wang Y, Wei J C, et al. Secreted expression of canine interferon alpha subtype 1 in Pichia pastoris and its antiviral activity. Journal of Nanjing Agricultural University, 2008, 31(4):107-112.
[8]   Li D, Zhang H M, Yang L, et al. Surface display of classical swine fever virus E2 glycoprotein on gram-positive enhancer matrix (GEM) particles via the SpyTag/SpyCatcher system. Protein Expression and Purification, 2020, 167:105526.
doi: 10.1016/j.pep.2019.105526
[9]   Li D, Wu J C, Chen J, et al. Optimized expression of classical swine fever virus E2 protein via combined strategy in Pichia pastoris. Protein Expression and Purification, 2020, 167:105527.
doi: 10.1016/j.pep.2019.105527
[10]   Guerfal M, Ryckaert S, Jacobs P P, et al. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microbial Cell Factories, 2010, 9:49.
doi: 10.1186/1475-2859-9-49 pmid: 20591165
[11]   Zhao H, Blazanovic K, Choi Y, et al. Gene and protein sequence optimization for high-level production of fully active and aglycosylated lysostaphin in Pichia pastoris. Applied and Environmental Microbiology, 2014, 80(9):2746-2753.
doi: 10.1128/AEM.03914-13
[12]   Zhu T, Guo M, Tang Z, et al. Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. Journal of Applied Microbiology, 2009, 107(3):954-963.
doi: 10.1111/j.1365-2672.2009.04279.x pmid: 19486418
[13]   Delic M, Valli M, Graf A B, et al. The secretory pathway: exploring yeast diversity. FEMS Microbiology Reviews, 2013, 37(6):872-914.
doi: 10.1111/1574-6976.12020
[14]   Zheng X Y, Zhang Y M, Zhang X Y, et al. Fhl1p protein, a positive transcription factor in Pichia pastoris, enhances the expression of recombinant proteins. Microbial Cell Factories, 2019, 18(1):207.
doi: 10.1186/s12934-019-1256-0
[15]   Chang H J, Jones E W, Henry S A. Role of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae. Genetics, 2002, 162(1):29-43.
doi: 10.1093/genetics/162.1.29 pmid: 12242221
[16]   Yu P, Zhu Q, Chen K F, et al. Improving the secretory production of the heterologous protein in Pichia pastoris by focusing on protein folding. Applied Biochemistry and Biotechnology, 2015, 175(1):535-548.
doi: 10.1007/s12010-014-1292-5
[17]   Yin Y, Garcia M R, Novak A J, et al. Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic Reticulum. PLoS Biology, 2018, 16(8):e2005140.
doi: 10.1371/journal.pbio.2005140
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[3] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[4] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[7] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[8] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[9] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[10] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[11] YANG Xu, HUANG Wei-wei, YAO Yu-feng, LIU Cun-bao, SUN Wen-jia, BAI Hong-mei, MA Yan-bing. Impact Factors on the Expression of Recombinant Human Papillomavirus 16 L1 Protein in Pichia pastoris[J]. China Biotechnology, 2017, 37(10): 1-7.
[12] ZHANG Jun, YANG Ya-Lin, TIAN Zi-Gang, WANG Jian-Hua. The Construction Strategy for Tandem Polypeptide Genes[J]. China Biotechnology, 2009, 29(08): 107-112.
[13] . Molecular Chaperones and Protein Folding[J]. China Biotechnology, 2006, 26(0): 157-161.