Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 90-96    DOI: 10.13523/j.cb.20191011
    
Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies
CHEN Xiu-xiu1,2,WU Cheng-lin2,ZHOU Li-jun1,2,**()
1 Department of Naval Clinical Medicine, Anhui Medical University, Beijing 100048, China
2 Central Laboratory of the Sixth Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100048, China;
Download: HTML   PDF(454KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As important therapeutic drugs, human antibodies have been widely applied in clinical therapy in recent years. At present, the range of clinical application has gradually expanded from tumors, autoimmune diseases and chronic inflammation to cardiovascular diseases and infection, Compared with conventional therapy, the advantages of antibody therapy are specificity and high efficiency, which provides a new choice for the treatment of diseases. The entire structure of the human antibody is encoded by the human antibody gene, the human antibody gradually becomes the first choice for the development of therapeutic antibodies for avoiding the adverse reactions caused by the long-term application of the heterologous protein. The main preparation techniques and clinical application progress of therapeutic human antibodies are reviewed. At the same time, the disadvantages of human antibody preparation technology are also discussed to provide references and ideas for the development of human antibodies.



Key wordsHuman antibody      Phage display technology      Transgenic mouse technology      Clinical application     
Received: 30 January 2019      Published: 12 November 2019
ZTFLH:  R392  
Corresponding Authors: Li-jun ZHOU     E-mail: hzzhoulj@126.com
Cite this article:

CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies. China Biotechnology, 2019, 39(10): 90-96.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191011     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/90

名称 形式 制备方法 靶点 所治疾病 上市时间
Adalimumab IgG1κ 噬菌体抗体库 TNF-α 类风湿性关节炎、克罗恩病 2002
Panitumumab IgG2κ 转基因鼠 EGFR 结直肠癌 2006
Golimumab IgG1κ 转基因鼠 TNF-α 类风湿性关节炎、溃疡性结肠炎 2009
Ustekinumab IgG1κ 转基因鼠 IL-12;IL-23 银屑病、银屑病关节炎、克罗恩病 2009
Canakinumab IgG1κ 转基因鼠 IL-1β 周期性发热、幼年特发性关节炎 2009
Ofatumumab IgG1κ 转基因鼠 CD20 慢性淋巴细胞白血病 2009
Denosumab IgG2κ 转基因鼠 RANK-L 骨质疏松症、实体瘤骨转移 2010
Belimumab IgG1λ 噬菌体抗体库 BAFF 系统性红斑狼疮 2011
Ipilimumab IgG1κ 转基因鼠 CTLA4 黑色素瘤 2011
Raxibacumab IgG1λ 噬菌体抗体库 炭疽杆菌P84抗原 吸入性炭疽 2012
Nivolumab IgG4κ 转基因鼠 PD1 黑色素瘤、非小细胞肺癌、霍奇金淋巴瘤 2014
Daratumumab IgG1κ 转基因鼠 CD38 多发性骨髓瘤 2015
Necitumumab IgG1κ 噬菌体抗体库 EGFR 鳞状非小细胞肺癌 2015
Alirocumab IgG1λ 转基因鼠 PCSK9 高胆固醇血症 2015
Evolocumab IgG2λ 转基因鼠 PCSK9 高胆固醇血症 2015
Olaratumab IgG1κ 转基因鼠 PDGFRα 软组织肉瘤 2016
Ramucirumab IgG1κ 噬菌体抗体库 VEGFR2 晚期胃癌、胃食管结合部腺癌 2014
Secukinumab IgG1κ 转基因鼠 IL-17A 斑块状银屑病、强直性脊柱炎 2015
Bezlotoxumab IgG2κ 转基因鼠 梭状芽孢杆菌毒素B 预防艰难梭菌感染复发 2016
Dupilumab IgG4κ 转基因鼠 IL-4Rα 特应性皮炎 2017
Durvalumab IgG1κ 转基因鼠 PD-L1 尿路上皮癌 2017
Sarilumab IgG1κ 转基因鼠 IL-6R 类风湿性关节炎 2017
Avelumab IgG1κ 噬菌体抗体库 PD-L1 默克细胞癌、尿路上皮癌 2017
Guselkumab IgG1λ 噬菌体抗体库 IL-23 中重度斑块状银屑病 2017
Brodalumab IgG1κ 转基因鼠 IL-17RA 中重度斑块状银屑病 2017
Erenumab IgG2λ 转基因鼠 CGRPR 预防成人偏头痛 2018
Burosumab IgG1κ 转基因鼠 FGF23 X连锁低磷血症 2018
Cemiplimab IgG4κ 转基因鼠 PD-1 皮肤鳞状细胞癌、局部晚期皮肤鳞状细胞癌 2018
Lanadelumab IgG1κ 噬菌体抗体库 Plasma kallikrein 遗传性血管性水肿 2018
Emapalumab IgG1λ 转基因鼠 IFNγ 原发性噬血细胞性淋巴组织细胞增多症 2018
Table 1 Human antibodies approved by the US FDA as of 2018
[1]   Frenzel A, Schirrmann T, Hust M . Phage display-derived human antibodies in clinical development and therapy. MAbs, 2016,8(7):1177-1194.
[2]   Carter P J, Lazar G A . Next generation antibody drugs:pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov, 2018,17(3):197-223.
[3]   Smith G P . Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface. Science, 1985,228(4705):1315-1317.
[4]   McCafferty J, Griffiths A D, Winter G , et al. Phage antibodies:filamentous phage displaying antibody variable domains. Nature, 1990,348(6301):552-554.
[5]   de Haard H J, van Neer N, Reurs A , et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem, 1999,274(26):18218-18230.
[6]   Brezski R J, Georgiou G . Immunoglobulin isotype knowledge and application to Fc engineering. Curr Opin Immunol, 2016,40:62-69.
[7]   Rahbarnia L, Farajnia S, Babaei H , et al. Evolution of phage display technology: from discovery to application. J Drug Target, 2017,25(3):216-224.
[8]   Lampreht T U, Horvat S , Cemazar M. transgenic mouse models in cancer research. Front Oncol, 2018,8:268.
[9]   Bruggemann M, Caskey H M, Teale C , et al. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci USA, 1989,86(17):6709-6713.
[10]   Lonberg N, Taylor L D, Harding F A , et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature, 1994,368(6474):856-859.
[11]   Green L L, Hardy M C , Maynard-Currie C E , et al.Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet, 1994,7(1):13-21.
[12]   Jakobovits A, Amado R G, Yang X , et al. From xenomouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol, 2007,25(10):1134-1143.
[13]   Poole R M, Vaidya A . Ramucirumab:first global approval. Drugs, 2014,74(9):1047-1058.
doi: 10.1007/s40265-014-0244-2
[14]   Shirley M . Olaratumab:first global approval. Drugs, 2017,77(1):107-112.
[15]   Cemiplimab Approved for treatment of CSCC. Cancer Discov, 2018,8(12):F2.
[16]   Busse P J, Farkas H, Banerji A , et al. Lanadelumab for the prophylactic treatment of hereditary angioedema with C1 inhibitor deficiency:a review of preclinical and phase i studies. Bio Drugs, 2019,33(1):33-43.
[17]   Lounder D T ,Bin Q,de Min C,, et al.Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv, 2019,3(1):47-50.
[18]   Citri A, Yarden Y . EGF-ERBB signalling:towards the systems level. Nat Rev Mol Cell Biol, 2006,7(7):505-516.
[19]   Chua Y J, Cunningham D . Panitumumab. Drugs Today (Barc), 2006,42(11):711-719.
[20]   Chen Q, Cheng M, Wang Z , et al. The efficacy and safety of panitumumab plus irrinotecan-based chemotherapy in the treatment of metastatic colorectal cancer: a meta-analysis. Medicine (Baltimore), 2016,95(50):e5284.
[21]   AlDallal S M . Ofatumumab—a valid treatment option for chronic lymphocytic leukemia patients. Ther Clin Risk Manag, 2017,13:905-907.
[22]   Barth M J, Mavis C, Czuczman M S , et al. Ofatumumab exhibits enhanced in vitro and in vivo activity compared to rituximab in preclinical models of mantle cell lymphoma. Clin Cancer Res, 2015,21(19):4391-4397.
[23]   Palumbo A, Chanan-Khan A, Weisel K , et al. Daratumumab,bortezomib,and dexamethasone for multiple myeloma. N Engl J Med, 2016,375(8):754-766.
[24]   Specenier P . Ipilimumab in melanoma. Expert Rev Anticancer Ther, 2016,16(8):811-826.
[25]   Tsai K K, Zarzoso I, Daud A I . PD-1 and PD-L1 antibodies for melanoma. Hum Vaccin Immunother, 2014,10(11):3111-3116.
[26]   Sharma P, Allison J P . The future of immune checkpoint therapy. Science, 2015,348(6230):56-61.
[27]   Larkin J, Chiarion-Sileni V, Gonzalez R , et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med, 2015,373(1):23-34.
[28]   Flamant M, Paul S, Roblin X . Golimumab for the treatment of ulcerative colitis. Expert Opin Biol Ther, 2017,17(7):879-886.
[29]   Reich K, Armstrong A W, Foley P , et al. Efficacy and safety of guselkumab,an anti-interleukin-23 monoclonal antibody,compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment:Results from the phase III,double-blind,placebo- and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol, 2017,76(3):418-431.
[30]   Alten R, Gram H, Joosten L A , et al. The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther, 2008,10(3):R67.
[31]   Gram H . Preclinical characterization and clinical development of ILARIS(R) (canakinumab) for the treatment of autoinflammatory diseases. Curr Opin Chem Biol, 2016,32:1-9.
[32]   Thompson P L, Nidorf S M . Anti-inflammatory therapy with canakinumab for atherosclerotic disease:lessons from the CANTOS trial. J Thorac Dis, 2018,10(2):695-698.
[33]   Rondeau J M, Ramage P, Zurini M , et al. The molecular mode of action and species specificity of canakinumab,a human monoclonal antibody neutralizing IL-1beta. MAbs, 2015,7(6):1151-1160.
[34]   Krause K, Tsianakas A, Wagner N , et al. Efficacy and safety of canakinumab in schnitzler syndrome:a multicenter randomized placebo-controlled study. J Allergy Clin Immunol, 2017,139(4):1311-1320.
[35]   Jokinen E . Obesity and cardiovascular disease. Minerva Pediatr, 2015,67(1):25-32.
[36]   Atanda A, Shapiro N L, Stubbings J , et al. Implementation of a new clinic-based, pharmacist-managed PCSK9 inhibitor consultation service. J Manag Care Spec Pharm, 2017,23(9):918-925.
[37]   Horton J D, Cohen J C, Hobbs H H.PCSK9:a convertase that coordinates LDL catabolism. J Lipid Res, 2009,50 Suppl: S172-S177.
[38]   Seidah N G, Awan Z, Chretien M , et al. PCSK9:a key modulator of cardiovascular health. Circ Res, 2014,114(6):1022-1036.
doi: 10.1161/CIRCRESAHA.114.301621
[39]   Cannon C P, Cariou B, Blom D , et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins:the ODYSSEY COMBO II randomized controlled trial. Eur Heart J, 2015,36(19):1186-1194.
[40]   Robinson J G, Farnier M, Krempf M , et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med, 2015,372(16):1489-1499.
[41]   Ascenzi P, Visca P, Ippolito G , et al. Anthrax toxin:a tripartite lethal combination. FEBS Lett, 2002,531(3):384-388.
[42]   Mazumdar S . Raxibacumab. MAbs, 2009,1(6):531-538.
[43]   Migone T S, Subramanian G M, Zhong J , et al. Raxibacumab for the treatment of inhalational anthrax. N Engl J Med, 2009,361(2):135-144.
[44]   Kufel W D, Devanathan A S, Marx A H , et al. Bezlotoxumab:a novel agent for the prevention of recurrent clostridium difficile infection. Pharmacotherapy, 2017,37(10):1298-1308.
[45]   Wilcox M H, Gerding D N, Poxton I R , et al. Bezlotoxumab for prevention of recurrent clostridium difficile infection. N Engl J Med, 2017,376(4):305-317.
[46]   Markham A . Erenumab:first global approval. Drugs, 2018,78(11):1157-1161.
[47]   Karsan N, Goadsby P J . Calcitonin gene-related peptide and migraine. Curr Opin Neurol, 2015,28(3):250-254.
[48]   Eftekhari S, Salvatore C A, Johansson S , et al. Localization of CGRP,CGRP receptor, PACAP and glutamate in trigeminal ganglion.relation to the blood-brain barrier. Brain Res, 2015,1600:93-109.
[49]   Schou W S, Ashina S, Amin F M , et al. Calcitonin gene-related peptide and pain:a systematic review. J Headache Pain, 2017,18(1):34.
[50]   Tepper S, Ashina M, Reuter U , et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised,double-blind,placebo-controlled phase 2 trial. Lancet Neurol, 2017,16(6):425-434.
[51]   Jain S, Yuan H, Spare N , et al. Erenumab in the treatment of migraine. Pain Manag, 2018,8(6):415-426.
[52]   Lamb Y N . Burosumab:first global approval. Drugs, 2018,78(6):707-714.
[53]   Zhang X, Imel E A, Ruppe M D , et al. Pharmacokinetics and pharmacodynamics of a human monoclonal anti-FGF23 antibody (KRN23) in the first multiple ascending-dose trial treating adults with X-linked hypophosphatemia. J Clin Pharmacol, 2016,56(2):176-185.
[54]   Lamb Y N . Burosumab:first global approval. Drugs, 2018,78(6):707-714.
[55]   Carpenter T O, Whyte M P, Imel E A , et al. Burosumab therapy in children with X-Linked hypophosphatemia. N Engl J Med, 2018,378(21):1987-1998.
[1] FANG Yuan,XU Guang-xian,WANG Xian,WANG Hong-xia,PAN Jun-fei. Construction of Camelid Natural Nanobody Phage Display Library and Screening for Anti-GDH Nanobody[J]. China Biotechnology, 2018, 38(12): 49-56.
[2] WANG Dian-liang, DU Juan. The Current Research and Development Status of Cell Drug[J]. China Biotechnology, 2016, 36(9): 126-133.
[3] LIU Yi-jie, XUE Yong-chang. The Research Progress of Flavonoids in Plants[J]. China Biotechnology, 2016, 36(9): 81-86.
[4] WANG Dian-liang. The Clinical Application of Cell Drug[J]. China Biotechnology, 2016, 36(12): 117-123.
[5] TANG Wen-yan, LUAN Zuo. Biological Characteristics and Clinical Application of Endothelial Progenitor Cells[J]. China Biotechnology, 2016, 36(10): 86-93.
[6] ZHANG Qiao-Juan, ZHANG Yan-Qiong, LIU Chang-Bai. TALEN:A New Genome Site-specific Editing Technology[J]. China Biotechnology, 2014, 34(7): 76-80.
[7] WANG Dian-liang. Clinical Researches of Tissue Engineering[J]. China Biotechnology, 2014, 34(10): 114-120.
[8] . Screening Human Transferrin Binding Peptides by Phage Display Technology[J]. China Biotechnology, 2010, 30(04): 89-94.
[9] . Immunotherapy of Alzheimer's Disease Mediated by Anti-A Antibodies[J]. China Biotechnology, 2008, 28(12): 107-111.