Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 49-56    DOI: 10.13523/j.cb.20181207
Orginal Article     
Construction of Camelid Natural Nanobody Phage Display Library and Screening for Anti-GDH Nanobody
FANG Yuan1,XU Guang-xian1,2,**(),WANG Xian1,WANG Hong-xia1,PAN Jun-fei1
1 Clinical Medical Colleges,Ningxia Medical University,Yinchuan 750004,China
2 General Hospital of Ningxia Medical University,Yinchuan 750004,China
Download: HTML   PDF(1253KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective To construct a natural nanobody phage display library as a nanobody platform for screening different antigens.Using GDH antigen to screen and obtain single domain antibody variable region gene (VHH) of the camel targeting GDH.Methods: Isolate the total RNA from the camel by using Oligo DT and synthesize the cDNA.The genes of variable domain of heavy chain(VHH) were amplified by nested PCR,and then were ligated with the vector pCANTAB5E.Next the recombinant vector cloned into TG1 to construct the phage display library ,and make the analysis and identification for the library.Using GDH to screening anti-GDH nanobodies,and identified the monoclonal by phage-ELISA.Result: The positive rate of the phage display library is 95%,the amino acid homology of nine randomly colonies is 66.17%,and it has a good variety after MEGA analyzing.After helper phage rescue,the titer of the phage display library is 4×10 12CFU/ml.And after three times round of screening,it showed significant enrichment of binding phage.In the end,two nanobodies sequence were obtained by sequencing positive clonoies. Conclusion: Successfully constructed a natural camelid nanobody phage display library,and the good diversity laid a foundation for selecting other nanobodies.Two GDH specific sequences derived from camel are obtained through phage display library,which can be used to prepare the diagnostic antibodies.



Key wordsNanobodies      Phage display technology      GDH     
Received: 30 July 2018      Published: 10 January 2019
ZTFLH:  Q511  
Corresponding Authors: Guang-xian XU     E-mail: 599040064@qq.com
Cite this article:

FANG Yuan,XU Guang-xian,WANG Xian,WANG Hong-xia,PAN Jun-fei. Construction of Camelid Natural Nanobody Phage Display Library and Screening for Anti-GDH Nanobody. China Biotechnology, 2018, 38(12): 49-56.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181207     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I12/49

引物 序列
CALL001 5'-GTCCTGGCTGCTCTTCTACAAAG-3'
CAll002 5'-GGTACGTGCTGTTGAACTGTTCC-3'
VHH-Forward 5'-TCGCGGCCCAGCCGGCCCAGGTCCAACTGCAGGAGTCTGGGG-3'
VHH-Reverse 5'-ATAAGAATGCGGCCGCTGAGGAGACGGTGACCTGGGTCCCC-3'
Table 1 Primer design of Nested PCR
Fig.1 Agarose gel electrophoresis of the first-round PCR M: DNA marker DL1000;1~3: 700bp PCR products
Fig.2 Agarose gel electrophoresis of the second-round PCR M: DNA marker DL1000;1~5: 400bp PCR products
Fig.3 Detection of the library titer by double dilution method (a) The growth of 10-2 dilution plating (b) The growth of 10-4 dilution plating (c) The growth of 10-6 dilution plating (d) The growth of 10-8 dilution plating
Fig.4 Colony PCR analyses colonies M: DNA marker DL1000;1~20: Randomly colonies
Fig.5 MEGA analysis Phylogenetic tree
Fig.6 Amino acid sequence analysis of nine randomly colonies
轮次 投入量
(CFU/ml)
洗脱量
(CFU/ml)
回收率
1 4×1012 1.5×104 3.8×10-9
2 3×109 7.0×104 2.3×10-5
3 1×109 5.0×106 5.0×10-3
Table 2 Selective enrichment of nanobody during panning
Fig.7 Identification of polyclonal phage by Phage-ELISA
Fig.8 Identification of monoclonal phage by Phage-ELISA (a):Phage-ELISA of monoclonal phage (b):Indirect Phage-ELISA of positive colonies
[1]   Gong R, Chen W, Dimitrov D S . Expression,purification,and characterization of engineered antibody CH2 and VH domains. Methods in Molecular Biology, 2012,899:85-102.
doi: 10.1007/978-1-61779-921-1_6 pmid: 22735948
[2]   Muyldermans S, Baral T N, Cortez Retamozzo V , et al. Camelid immune-globulins and nanobody technology. Vet Immunol Immunopathol, 2009,128:178-183.
doi: 10.1016/j.vetimm.2008.10.299 pmid: 19026455
[3]   Beghein E, Gettemans J . Nanobody technology:A versatile toolkit for microscopic imaging,protein-protein interaction analysis,and protein function exploration. Frontiers in Immunology, 2017,8:771-774.
doi: 10.3389/fimmu.2017.00771 pmid: 28725224
[4]   Vincke C, Loris R, Saerens D , et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. Journal of Biological Chemistry, 2009,284(5):3273-3284.
doi: 10.1074/jbc.M806889200 pmid: 19010777
[5]   Luciano J A, Zuckerbraun B S . Clostridium difficile infection: prevention,treatment,and surgical management. Surg Clin North Am, 2014,94(6):1335-1349.
doi: 10.1016/j.suc.2014.08.006 pmid: 25440127
[6]   Planche T, Wilcox M H . Diagnostic pitfalls in Clostridium difficile infection. Infect Dis Clin North Am, 2015,29(1):63-82.
doi: 10.1016/j.idc.2014.11.008 pmid: 25595842
[7]   Ticehuist J R, Aird D Z, Dam L M , et al. Effective detection of toxigenic clostridium difficile by a two-step algorithm including tests for antigen and cytotoxin. Journal of Clinical Microbiology, 2006,44(3):1145.
doi: 10.1021/bi061345i pmid: 16517916
[8]   Kim J, Pai H, Seo M , et al. Epidemiology and clinical characteristics of clostridium difficile infection in a korean tertiary hospital. Journal of Korean Medical Science, 2011,26(10):1258.
doi: 10.3346/jkms.2011.26.10.1258 pmid: 3192334
[9]   Yillib SV . “Camel nanoantibody” is an efficient tool for research,diagnostics and therapy. Mol Biol(Mosk), 2011,45(1):77-85.
doi: 10.1134/S0026893311010134 pmid: 21485499
[10]   Sambrook J, Russell D W. Molecular cloning:a laboratory manual. 3rd ed . New York:Cold Spring Harbor Laboratory Press, 2002: 99-102.
[11]   Jahnichen S, Blanchetot C, Maussang D , et al. CXCR4 nanobodies (VHH-based single variable domians)potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(47):20 565-20 570.
[12]   Groot A J, Verheesen P, Westerlaken E J , et al. Identification by phage display of single-domain antibody fragments specific for the ODD domain in hypoxia-inducible factor 1alpha.Laboratory Investigation; A Journal of Technical Methods and Pathology, 2006,86(4):345-356.
doi: 10.1038/labinvest.3700395 pmid: 16482104
[13]   Yan J, Li G, Hu Y, Qu W, Wan Y . Construction of a synthetic phage-displayed nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J Transl Med, 2014,12:343.
doi: 10.1186/s12967-014-0343-6 pmid: 25496223
[1] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[2] TU Zhui, XU Yang, LIU Xia, HE Qing-hua, TAO Yong. Construction and Biopanning of Camelid Naïve Single-domain Antibody Phage Display Library[J]. China Biotechnology, 2011, 31(04): 31-36.
[3] . Screening Human Transferrin Binding Peptides by Phage Display Technology[J]. China Biotechnology, 2010, 30(04): 89-94.
[4] LI Mei-Ning . Expression Purification and Identification of 15-Hydroxyproglandin Dehydrogenase Gene in Escherichia coli[J]. China Biotechnology, 2008, 28(5): 41-45.
[5] . Expression, Purification and Enzymatic Characterization of Klebsiella sp. glycerol dehydrogenase in E. coli[J]. China Biotechnology, 2008, 28(12): 30-35.