Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 97-104    DOI: 10.13523/j.cb.20191012
    
Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors
LI Wen1,CHEN Jie1,HU Wei-nan1,QI Ya-yun1,FU Yi-hong1,LIU Jia-min1,WANG Zhen-chao1,2,3,**(),OUYANG Gui-ping1,3,4,**()
1 College of Pharmacy, Guizhou University, Guiyang 550025, China
2 State Key Laboratory of Efficacy and Utilization of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
3 Center for Research of Fine Chemicals, Guizhou University, Guiyang 550025, China
4 Center for Research of Fine Chemicals, Guizhou University, Guiyang 550025, China
Download: HTML   PDF(1543KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Epidermal growth factor receptor (EGFR) is an important transmembrane receptor with tyrosine kinase activity, which is abnormally expressed in a variety of malignant tumors and closely related to the proliferation, differentiation, metastasis and other life activities of tumor cells. At present, EGFR has been considered as a target for the treatment of tumors, and the drugs targeting on EGFR are mainly divided into two categories, one is monoclonal antibody drugs, and the other is small molecular kinase inhibitors. Small molecule inhibitors are prone to lead to EGFR mutation and drug resistance, thus affecting their clinical application. These mutations occur mainly near the ATP-binding site of the tyrosine kinase region, which are mainly deletion mutations on exon 19 and point mutations on exons 18 and 21.The types of drug-resistant mutations of EGFR and the ways in which they interact with small molecule inhibitors have been reviewed, with a view to providing references for the subsequent research and development of EGFR targeted drugs.



Key wordsEGFR      EGFR small molecule inhibitors      Resistance      Interaction     
Received: 02 March 2019      Published: 12 November 2019
ZTFLH:  Q814  
Corresponding Authors: Zhen-chao WANG,Gui-ping OUYANG     E-mail: wzc.4884@163.com;oygp710@163.com
Cite this article:

LI Wen,CHEN Jie,HU Wei-nan,QI Ya-yun,FU Yi-hong,LIU Jia-min,WANG Zhen-chao,OUYANG Gui-ping. Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors. China Biotechnology, 2019, 39(10): 97-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191012     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/97

Fig.1 Exon structure of EGFR and somatic mutations within the tyrosine kinase domain of the gene[22]
Fig.2 The structure of Gefitinib and the crystal structure of EGFR-Gefitinib[26]
序号 小分子抑制剂 英文名称 研发公司或研究人员 作用EGFR类型 研究状况
第一代 吉非替尼 Gefitinib 阿斯利康 EGFR野生型 已上市
第一代 厄洛替尼 Erlotinib Roche、OSI和Genentech EGFR L858R 突变 已上市
第一代 埃克替尼 Lcotinib 贝达药业 EGFR L858R 突变 已上市
第二代 阿法替尼 Afatinib Boehringer和Ingelheim EGFR L858R/T790M 突变 已上市
第三代 奥希替尼 AZD9291 阿斯利康 EGFR野生型、EGFR T790M 突变型 已上市
第三代 诺司替尼 Rociletinib
(CO-1686)
Clovis EGFR L858R/T790M 突变型和EGFR野生型 Ⅱ/Ⅲ期临床研究(2016年4月被FDA拒绝上市后停止研究)
第三代 HM61713 HM61713 韩美药业 EGFR L858R/T790M 突变型和EGFR野生型 已上市
第三代 WZ4002 WZ4002 Dana-Farber癌症研究院和Gray’s实验室 EGFR L858R/T790M 突变型和EGFR野生型 至今并没有进入临床试验阶段
第三代 艾维替尼 AC0010 杭州艾森 EGFR L858R/T790M 突变型和EGFR野生型 已上市
第三代 ASP8273 ASP8273 Astellas 19位外显子缺失型、EGFR L858R/T790M 突变型 Ⅱ/Ⅲ期临床研究
第三代 EGF816 EGF816 诺华 19位外显子缺失型、EGFR L858R/T790M 突变型 Ⅱ期临床试验
第四代 EAI001 EAI001 Jia等 EGFR L858R/T790M/C797S突变型 临床前研究
第四代 EAI045 EAI045 Jia等 EGFR L858R/T790M/C797S突变型 临床前研究
Table 1 Recent research on EGFR small molecule inhibitors
Fig.3 The structure of Erlotinib and the crystal structure of EGFR-Erlotinib[27]
Fig.4 The structure of Afatinib and the crystal structure of EGFR-Afatinib
Fig.5 The structure of AZD9291 and the crystal structure of EGFR-AZD9291[32]
Fig.6 The structure of WZ4002 and the crystal structure of EGFR-WZ4002[34]
Fig.7 The structure of AC0010 and the crystal structure of EGFR-AC0010[35]
Fig.8 The structure of EAI045 and the crystal structure of EGFR-EAI045[36]
[1]   Parkin D M, Bray F, Ferlay J , et al. Global cancer statistics. Ca Cancer J Clin, 2011,61(2):69-90.
doi: 10.3322/caac.21262 pmid: 25651787
[2]   Herbst R S, Heymach J V, Lippman S M . Lung cancer. N Engl J Med, 2008,359(13):1367-1380.
[3]   De Gunst M M, Gallegos-Ruiz M I, Giaccone G , et al. Functional analysis of cancer-associated EGFR mutants using a cellular assay with YFP-tagged EGFR intracellular domain. Molecular Cancer, 2007,6(1):56.
[4]   Kris M G, Natale R B, Herbst R S , et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA, 2003,290(16):2149-2158.
[5]   Bishayee S . Role of conformational alteration in the epidermal growth factor receptor function. Biochemical Pharmacology, 2000,60(8):1217-1223.
[6]   Hunter T . Growth factors:the epidermal growth factor receptor gene and its product. Nature, 1984,311(5985):414-416.
[7]   Ogiso H, Ishitani R, Nureki O , et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 2002,110(6):775-787.
[8]   Schlessinger J . Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell, 2002,110(6):669-672.
[9]   Shan Y, Eastwood M P, Zhang X , et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell, 2012,149(4):860-870.
doi: 10.1016/j.cell.2012.02.063
[10]   Downward J, Yarden Y, Mayes E , et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature, 1984,307(5951):521-527.
[11]   Lemmon M A, Schlessinger J, Ferguson K M . The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harbor Perspectives in Biology, 2014,6(4):a020768.
[12]   Papakyriakou A, Vourloumis D, Tzortzatou-Stathopoulou F , et al. Conformational dynamics of the EGFR kinase domain reveals structural features involved in activation. Proteins: Structure, Function, and Bioinformatics, 2009,76(2):375-386.
[13]   Garrett T P J, McKern N M, Lou M , et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell, 2002,110(6):763-773.
[14]   Holbro T, Hynes N E, Civenni G , et al. The ErbB receptors and their role in cancer progression. Experimental Cell Research, 2003,284(1):0-110.
[15]   Sinclair J K L, Denton E V, Schepartz A . Inhibiting epidermal growth factor receptor at a distance. Journal of the American Chemical Society, 2014,136(32):11232-11235.
doi: 10.1021/ja504076t
[16]   Kennedy E J, Kannan N . Dialing in EGFR signaling. Chemistry & Biology, 2015,22(6):687-688.
[17]   Eck M J, Hahn W C . EGFR in limbo. Cell, 2012,149(4):735-737.
doi: 10.1016/j.cell.2012.04.015
[18]   Normanno N, De Luca A, Bianco C , et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006,366(1):2-16.
[19]   Wu Y L . EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? Trends in Pharmacological Sciences, 2016,37(11):887-903.
[20]   杨雅琼, 李宗海 . 以EGFR为靶点的肿瘤分子靶向药物研究进展. 中国生物工程杂志, 2012,32(5):91-96.
[20]   Yang Y Q, Li Z H . Recent development of molecular targeted cancer drugs targeted EGFR. China Biotechnology, 2012,32(5):91-96.
[21]   Wang S, Song Y, Liu D . EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Letters, 2017,385(1):51-54.
[22]   Yasuda H, Kobayashi S, Costa D B . EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. The Lancet Oncology, 2012,13(1):23-31.
[23]   Helena A Y, Arcila M E, Rekhtman N , et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clinical Cancer Research, 2013,19(8):2240-2247.
doi: 10.1158/1078-0432.CCR-12-2246
[24]   Sequist L V, Waltman B A, Dias-Santagata D , et al.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors.Science Translational Medicine,2011, 3(75): 75ra26.
[25]   Yun C H, Mengwasser K E, Toms A V , et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences, 2008,105(6):2070-2075.
[26]   Yun C H, Boggon T J, Li Y , et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 2007,11(3):217-227.
doi: 10.1016/j.ccr.2006.12.017
[27]   Stamos J, Sliwkowski M X, Eigenbrot C . Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. Journal of Biological Chemistry, 2002,277(48):46265-46272.
[28]   Solca F, Dahl G, Zoephel A , et al. Target binding properties and cellular activity of afatinib(BIBW 2992), an irreversible ErbB family blocker. Journal of Pharmacology and Experimental Therapeutics, 2012,343(2):342-350.
doi: 10.1124/jpet.112.197756
[29]   Rewcastle G W, Denny W A, Bridges A J , et al. Tyrosine kinase inhibitors. 5. synthesis and structure-activity relationships for 4-[(phenylmethyl) amino]-and 4-(phenylamino) quinazolines as potent adenosine 5'-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor. Journal of Medicinal Chemistry, 1995,38(18):3482-3487.
[30]   Gaul M D, Guo Y, Affleck K , et al. Discovery and biological evaluation of potent dual ErbB-2/EGFR tyrosine kinase inhibitors: 6-thiazolylquinazolines. Bioorganic & Medicinal Chemistry Ietters, 2003,13(4):637-640.
[31]   Cross D A E, Ashton S E, Ghiorghiu S , et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discovery, 2014,4(9):1046-1061.
doi: 10.1158/2159-8290.CD-14-0337
[32]   Yosaatmadja Y, Silva S, Dickson J M , et al. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed. Journal of Structural Biology, 2015,192(3):539-544.
[33]   Niessen S, Dix M M, Barbas S , et al. Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell Chemical Biology, 2017,24(11):1388-1400.
[34]   Song Z, Ge Y, Wang C , et al. Challenges and perspectives on the development of small-molecule EGFR inhibitors against T790M-mediated resistance in non-small-cell lung cancer: miniperspective. Journal of Medicinal Chemistry, 2016,59(14):6580-6594.
[35]   Xu X, Mao L, Xu W , et al. AC0010, an irreversible EGFR inhibitor selectively targeting mutated EGFR and overcoming T790M-induced resistance in animal models and lung cancer patients. Molecular Cancer Therapeutics, 2016,15(11):2586-2597.
[36]   Zhao P, Yao M Y, Zhu S J , et al. Crystal structure of EGFR T790M/C797S/V948R in complex with EAI045. Biochemical and Biophysical Research Communications, 2018,502(3):332-337.
[37]   Singh M, Jadhav H R . Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. Drug Discovery Today, 2018,23(3):745-753.
[38]   Jia Y, Yun C H, Park E , et al. Overcoming EGFR(T790M)and EGFR(C797S)resistance with mutant-selective allosteric inhibitors. Nature, 2016,534(7605):129-132.
[1] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[2] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[3] CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang. Interaction between Protein Corona and Nanoparticles[J]. China Biotechnology, 2020, 40(4): 78-83.
[4] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[5] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[6] ZENG Qiang,MENG Qiu-cheng,DENG Li-hua,LI Jin-jiang,YU Jiang-hui,WENG Lu-shui,XIAO Guo-ying. Identification and Analysis of Important Phenotypes of E1C608 with Glyphosate Resistance and Lepidopteran Resistance in Rice[J]. China Biotechnology, 2019, 39(11): 31-38.
[7] Xiao-yong ZHANG,Qian-cheng LUO. Establishment and Clinical Application of LNA-PCR Assay Detecting Hepatitis B Virus Adefovir Dipivoxil Resistance[J]. China Biotechnology, 2018, 38(9): 48-54.
[8] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[9] Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth[J]. China Biotechnology, 2018, 38(8): 92-99.
[10] Li-li YU,Bo HU,Xue LI,Nai-shuo ZHU. Identification of Protein-protein Interaction of Hepatitis B Virus X Protein and Tab1 in Vivo and in Vitro[J]. China Biotechnology, 2018, 38(7): 1-6.
[11] Zhong-yang YE,Huai-yu QIU,Bing-hua ZHU,Ze LI,Ye ZHU,Li-gui WANG. Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance[J]. China Biotechnology, 2018, 38(7): 89-93.
[12] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[13] Jia-wei ZENG,Guo-feng HOU,Ji-ping ZHENG,Nou YANG,Ji-feng ZENG,Gui-ying GUO. The Progress of CRISPR/Cas System Used As Antimicrobials[J]. China Biotechnology, 2018, 38(11): 59-65.
[14] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.
[15] GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids[J]. China Biotechnology, 2017, 37(8): 104-109.