Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (8): 59-67    DOI: 10.13523/j.cb.20150809
    
Research on Gene Knockout and Function of FgPDE1 in Fusarium graminearum
CHANG Yu-mei, HOU Zhan-ming
College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
Download: HTML   PDF(933KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The purpose is to knock out FgPDE1 gene in Fusarium graminearum, so as to identify the function of the gene through analysis of the phenotype of the deletion mutants. Methods: The Split-marker strategy is applied to build knockout cassette containing hygromycin phosphotransferase gene and anti-hygromycin transformants are obtained by using PEG-mediated protoplast transformation. The FgPDE1 gene deletion mutants are screened by the absent of the PCR products of the FgPDE1 gene. The function of the gene is analyzed according to the mutant phenotype and pathogenicity detection. Results: The Split-marker knockout cassette is successfully constructed and the transformants are obtained after PEG-mediated transformation of the protoplasts of PH-1 and then, three FgPDE1 gene deletion mutants are obtained through PCR screening. The phenotypic analysis revealed that there is no significant difference between ΔFgPDE1 and wild type in terms of colony phenotype and growth rate. The virulence assay by fruit of tomato infected by conidiospores show that the mutants do not decrease greatly in pathogenicity. However, microscopic observation show that the conidiospore amount of ΔFgPDE1 reduce significantly. Conclusions: FgPDE1 gene might be related to conidia formation of the Fusarium graminearum.



Key wordsFusarium graminearum      FgPDE1      Gene knockout      Split-marker     
Received: 10 March 2015      Published: 25 August 2015
ZTFLH:  Q789  
Cite this article:

CHANG Yu-mei, HOU Zhan-ming . Research on Gene Knockout and Function of FgPDE1 in Fusarium graminearum. China Biotechnology, 2015, 35(8): 59-67.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150809     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I8/59


[1] 王裕中,米勒.中国小麦赤霉病菌优势种—禾谷镰刀菌产毒素能力的研究.真菌学, 1994,13(3):229-234. Wang Y Z, Miller J D. Toxin producing potential of Fusarium graminearum from China. Acta Mycologica Sinica, 1994, 13(3):229-234.

[2] Gale L R, Chen L F, Hernick C A, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China. Ecology and Population Biology, 2002, 92(12): 1315-1322.

[3] 袁婷露,曹秀云. 禾谷镰刀菌致病力和致病基因的研究进展. 安徽农业科学, 2008, 36(14): 5915- 5916, 5916,5934. Yuan T L, Cao X Y. Research progress of virulence and pathogenicity genes of Fusarium graminearum. Journal of Anhui Agricultural Sciences, 2008, 36(14): 5915-5916,5934.

[4] 张大军,邱德文,蒋伶活.禾谷镰刀菌基因组学研究进展.安徽农业科学,2009, 37(17): 7892- 7894. Zhang D J, Qu D W, Jang L H. Research progress on the genomics of Fusarium graminearum. Journal of Anhui Agricultural Sciences, 2009, 37(17): 7892- 7894.

[5] 王琢,闫培生.真菌毒素产生菌的分子鉴定研究进展.中国农业科技导报,2010,12(5):42-50. Wang Z,Yan P S. Research progress on molecular identification of mycotoxin-producing fungi. Journal of Agicultural Science and Technology, 2010, 12(5):42-50.

[6] 戴大凯,贾晓静,武东霞,等.小麦赤霉病菌多菌灵抗性群体的扩散路径分析—基于致病菌种类及所产毒素化学型鉴定和抗药性检出的时序性.农药学学报, 2013,15(3):279-285. Dai D K, Jia X J, Wu D X, et al. Analysis of diffusion path of carbendazim-resistance population of Fusarium head bligh-based on Fusarium species, mycotoxin chemotype and resistance timing. Chinese Journal of Pesticide Science, 2013,15(3):279-285.

[7] McMullen M P, Jones R, Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease, 1997, 81(12):1340-1348.

[8] Windels C E. Economic and social impacts of Fusarium head blight:changing farms and rural communities in the northern Great Plains. Phytopathology, 2000, 90:17-21.

[9] 张雁南,樊坪升.禾谷镰刀菌对多菌灵抗性的监测及其演变规律.农药,2009,48(8):603-613. Zhang Y N, Fan P S. Monitoring and evolvement of resistance to carbendazim of Fusarium graminearum. Agrochemicals, 2009, 48(8):603-613.

[10] 陆维忠,程顺和.细胞工程在小麦抗赤霉病育种中的利用.江苏农业学报,1998,14(1): 9-14. Lu W Z, Cheng S H. Study on utilization of cell engineering in breeding wheat for scab-resistance. JiangSu Academy of Agricultural Sciences, 1998,14(1):9-14.

[11] Brown D W, Robert A E. Proctor Fusarium genomic resources: Tools to limit crop diseases and mycotoxin contamination. My-copathologia, 2006, 162: 191-199.

[12] Jurgenson J E, BowdenR L,Zeller K A,et al. A genetic map of Gibberella zeae (Fusarium graminearum).Genetics, 2002, 160(4):1451-1460.

[13] Hou Z M, Xue C Y, Peng Y L, et al. A mitogen-activated protein kinase gene (MGV1)in Fusarium graminearum is required for female fertility, heterokaryon formation and plant infection. Mol Plant Microbe Interact, 2002, 15(11): 1119-1127.

[14] Christian A V, Wilhelm S. A secret lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant Journal, 2005, 42: 364-375.

[15] Lysoe E, Klemsdal S S, Bone K R, et al. The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Applied and Environmental Micorobiology, 2006, 72(6): 3924 -3932.

[16] Brunner K, Lichtenauer A M, Kratochwill K, et al. Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Current Genetics, 2007, 52(5-6): 213-220.

[17] Kim J H, Kim H W, Heo D H, et al. FgEnd1 is a putative component of the endocytic machinery and mediates ferrichrome uptake in F. graminearum. Current Genetics, 2009, 55(6):593-600.

[18] Son H, Kim M G, Chae S K, et al. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum. Journal of Microbiology, 2014, 52(11):930-939.

[19] Lee Y, Min K, Son H, et al. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Molecular Plant-Microbe Interactions, 2014, 27(12):1344-1355.

[20] Ramanujam R, Naqvi N I, Howlett B J. PdeH, a high-affinity cAMP phosphodiesterase, is a Key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS Pathog, 2010, 6(5): e1000897.

[21] Hicks J K, Bahn Y S, Heitman J. Pde1 phosphodiesterase modulates cyclic AMP levels through a protein kinase A-mediated negative feedback loop in Cryptococcus neoformans. Eukaryot Cell, 2005, 4(12): 1971-1981.

[22] 吴彬.小麦赤霉菌 FGAC1 基因敲除及功能研究.呼和浩特:内蒙古师范大学,2011. Wu B. Characterization of FGAC1 Gene of Fusarium graminearum. Hohhot:Inner Mongolia Normal University, 2011.

[23] Balhadère P V, Talbot N J. PDE1 encodes aP-type ATPase involved in Appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001, 13(9): 1987-2004.

[1] PENG Hai-li,HOU Zhan-ming. MGV1 Dependent Transcripts(MDT1)Gene in Fusarium Graminearum is Involved in Conidiation and Vegetative Growth[J]. China Biotechnology, 2020, 40(8): 10-18.
[2] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[3] GUO Jing,HOU Zhan-ming. Folpcs1 Is Responsible for Asexual Reproduction and Vegetative Growth in Fusarium oxysporum f. sp. Lini.[J]. China Biotechnology, 2020, 40(3): 48-64.
[4] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[5] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.
[6] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[7] Chun-xiao SU,Xiao-yu ZHANG,Han ZENG,Ya-xi CHEN,Xiong-zhong RUAN,Ping YANG. Establishment and Identification of Liver-Specific CD36 Knockout Mice[J]. China Biotechnology, 2018, 38(8): 26-33.
[8] Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells[J]. China Biotechnology, 2018, 38(10): 38-47.
[9] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[10] DU Hong-yan, LI Tian-ming, LIU Jin-lei, FENG Hui-yong. Construct the Uracil Phosphoribosyl Transferase Gene Mutant Strain in Gluconobacter suboxydans for Seamless Genome Editing[J]. China Biotechnology, 2016, 36(7): 64-71.
[11] HAN Hai hong, WANG Jun qing, WANG Teng fei, XIAO Jing, HAN Deng lan, WANG Rui ming. Method and Application of Gene Knockout Based Single Cross in Bacillus licheniformis 20085[J]. China Biotechnology, 2016, 36(11): 63-69.
[12] SHEN Dong-ling, SHANG Shu-mei, LI Wei-na, YAN Jin-ping, HANGAN Ir-bis. Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1[J]. China Biotechnology, 2015, 35(7): 37-44.
[13] TAO Si-mei, ZHENG Wei, ZHAO Peng-chao, ZHOU Wei, QUAN Chun-shan, FAN Sheng-di. Effects of bmy Gene knockout on Hemolysis and Antifungal activity of Bacillus amyloliquefaciens Q-426[J]. China Biotechnology, 2014, 34(3): 56-60.
[14] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.
[15] YE Xiang-li, LI Da-li. Rapid Construction of GPR126 Conditional Gene-targeting Vector[J]. China Biotechnology, 2013, 33(4): 106-113.