Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (7): 37-44    DOI: 10.13523/j.cb.20150706
    
Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1
SHEN Dong-ling1, SHANG Shu-mei2, LI Wei-na1, YAN Jin-ping1, HANGAN Ir-bis1
1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
2. Life Science and Technology Institute, Yangtze Normal University, Chongqing 408100, China
Download: HTML   PDF(947KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To improve the yield of ethanol by Thermoanaerobacterium calidifontis Rx1, constructed a engineered mutant Δack. First a recombinant plasmid containing mutation cassettes of pta::ack, was rebuild, and the vector was transformed to cell to disrupt the target genes on the chromosomal via the homologous recombination. Then glucose fermentation, cellobiose fermentation, xylose fermentation, acid hydrolyzate of corncob of Δack mutant and the wild strain were performed respectively to produce ethanol and lactate. The results indicate that the acetate of Δack mutant is much lower as compared with the wild. Dray cell weight of the mutant is always lower than that of the wild under four conditions. However, the yield of ethanol or lactate is more than the wild. When Δack mutant used cellobiose to produce ethanol, the yield is 3.60g/L higher than another three substrates. At the same time, it could be exist approximative 40mmol/L acetate in the hydrolysate, so the output of lactate and ethanol of the wild are more than that with xylose fermentation.



Key wordsThermophilic anaerobic bacteria      Gene knockout      Ethanol fermentation     
Received: 26 February 2015      Published: 25 July 2015
ZTFLH:  Q789  
Cite this article:

SHEN Dong-ling, SHANG Shu-mei, LI Wei-na, YAN Jin-ping, HANGAN Ir-bis. Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1. China Biotechnology, 2015, 35(7): 37-44.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150706     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I7/37


[1] Kumar A, Singh L K, Ghosh S, et al. Bioconversion of lignocellulosic fraction of water-hyacinth hemicelluloses acid hydrolysate to ethanol by pickier styptic. Bioresource Technology, 2009, 100(13): 3293-3297.

[2] Lynd L R, Laser M S, Bransby D, et al. How biotech can transform biofuels. Nat Biotechnol, 2008, 26(2):169-172.

[3] Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 2012, 38(14):522-550.

[4] EI-Zawawy W K, Ibrahim M M, Abdel-Fattah Y R, et al. Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymers, 2011, 84(3):865-871.

[5] Sommer P, Georgieva T, Ahring B K. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans, 2004, 32(2):283-289.

[6] Olson D G, McBride J E, Shaw A J, et al. Recent progress in consolidatedbioprocessing. Curr Opin Biotechnol, 2012, 23(3):396-405.

[7] Desai S G, Guerinot M L, Lynd L R. Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol, 2004, 65(5): 600-605.

[8] Shaw A J, Podkaminer K K, Desai S G, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA, 2008, 105(37): 13769-13774.

[9] Taylor M P, Eley K L, Martin S, et al. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol, 2009, 27(7): 398-405.

[10] Yao S, Mikkelsen M J. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol, 2010, 19(3): 123-133.

[11] Li S, Lai C, Cai Y, et al. High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain. Bioresour Technol, 2010, 101(22): 8718-8724.

[12] Park J M, Kim T Y, Lee S Y. Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv, 2009, 27(6): 979-988.

[13] Patnaik R. Engineering complex phenotypes in industrial strains. Biotechnol Prog, 2008, 24(1): 38-47.

[14] Shang S M, Qian L, Zhang X, et al. Thermoanaerobacterium calidifontis sp. nov., a novel anaerobic, thermophilic, ethanol producing bacterium from hot springs in China. Arch Microbiol, 2013, 195(6):439-445.

[15] Hoseki J, Yano T, Y Koyama, et al. Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem, 1999, 126(5): 951-956.

[16] Romano I, Dipasquale L, Orlando P, et al.Thermoanaerobacterium thermostercus sp.nov. a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles, 2010,14(2): 233-240.

[17] Argyros D A, Tripathi S A, Barrett T F, et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Applied and Environmental Microbiology, 2011,77(23):8288-8294.

[18] Yang X, Lai Z, Lai, C, et al. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity. Biotechnol Biofuels, 2013,6(1):124.

[19] Mai V, Wiegel J. Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Applied and Environmental Microbiology, 2000,66(11): 4817-4821.

[20] Tripathi S A, Olson D G, Argyros D A, et al. Development of pyrF-based genetic system for targeted gene deletion in clostridium thermocellum and creation of a pta mutant. Applied and Environmental Microbiology, 2010,76(19): 6591-6599.

[21] Shaw A J, Podkaminer K K, Desai S G, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA, 2008,105(37): 13769-13774.

[22] 尚淑梅,申冬玲,李坤志,等. 高温菌发酵甘露醇高效产乙醇的代谢途径研究. 中国生物工程杂志, 2013,33(10): 73-80. Shang S M, Shen D L, Li K Z, et al. Study on metabolic pathway of efficiently producting ethanol by thermophilic bacterium using mannitol. China Biotechnology, 2013, 33(10): 73-80.

[23] He Q, Lokken P M, Chen S, et al. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. Bioresour Technol, 2009, 100(23): 5955-5965.

[24] Mai V, Lorenz W W, Wiegel J. Transformation of Thermoanaerobacterium sp. Strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiology Letters, 1997, 148(2):163-167.

[25] Jantama K, Zhang X, Moore J C, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli. Biotechnology and Bioengineering, 2008,101(5): 881-893.

[1] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[2] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[3] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.
[4] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[5] Chun-xiao SU,Xiao-yu ZHANG,Han ZENG,Ya-xi CHEN,Xiong-zhong RUAN,Ping YANG. Establishment and Identification of Liver-Specific CD36 Knockout Mice[J]. China Biotechnology, 2018, 38(8): 26-33.
[6] Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells[J]. China Biotechnology, 2018, 38(10): 38-47.
[7] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[8] DU Hong-yan, LI Tian-ming, LIU Jin-lei, FENG Hui-yong. Construct the Uracil Phosphoribosyl Transferase Gene Mutant Strain in Gluconobacter suboxydans for Seamless Genome Editing[J]. China Biotechnology, 2016, 36(7): 64-71.
[9] HAN Hai hong, WANG Jun qing, WANG Teng fei, XIAO Jing, HAN Deng lan, WANG Rui ming. Method and Application of Gene Knockout Based Single Cross in Bacillus licheniformis 20085[J]. China Biotechnology, 2016, 36(11): 63-69.
[10] CHANG Yu-mei, HOU Zhan-ming . Research on Gene Knockout and Function of FgPDE1 in Fusarium graminearum[J]. China Biotechnology, 2015, 35(8): 59-67.
[11] TAO Si-mei, ZHENG Wei, ZHAO Peng-chao, ZHOU Wei, QUAN Chun-shan, FAN Sheng-di. Effects of bmy Gene knockout on Hemolysis and Antifungal activity of Bacillus amyloliquefaciens Q-426[J]. China Biotechnology, 2014, 34(3): 56-60.
[12] GAO Jiao-qi, HAN Xi-tong, KONG Liang, YUAN Wen-jie, WANG Na, BAI Feng-wu. Application Progress of Kluyveromyces marxianus in the Industrial Biotechnology[J]. China Biotechnology, 2014, 34(2): 109-117.
[13] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.
[14] ZI Li-han, LIU Chen-guang, WANG Na, YUAN Wen-jie, BAI Feng-wu. Very High Gravity Ethanol Production Under Different Aeration Schemes[J]. China Biotechnology, 2013, 33(6): 86-92.
[15] YE Xiang-li, LI Da-li. Rapid Construction of GPR126 Conditional Gene-targeting Vector[J]. China Biotechnology, 2013, 33(4): 106-113.