Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (06): 89-95    DOI: Q786
    
Clonning the Promoter of AtHsp17.6-C2 and its Heat Inducible Kinetics
ZENG Wei-jun1,2,WANG Shui-ping1,LI Xiao-fang1,XU Ping3,WANG Rui-gang4**
1.School of Life Science, East China Normal University, Shanghai 200062, China
2.College of Life Science and Chemistry,Xinjiang Normal University,Urumqi 830054,China
3.Shanghai Information Center for Life Science,CAS, Shanghai 200031,China
4.College of Life Sciences, Inner Mongolia Agricultural University, Huhhot 010018, China
Download: HTML   PDF(636KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A gene expression system were constructed, driven by a heat-shock gene promoter (AtHsp17.6-C2), to control the expression of reporter gene (GUS) in transgenic plants. The expression of the AtHsp17.6-C2 chimeric gene in the stable transformants of ⊿F122-13 was hardly detected in culture at 22℃. However,the expression increased dramatically at the transcriptional level when the incubation temperature was shifted to 34~37℃. The optimal temperature for heat (shock) induction was 37℃. After a 2h incubation at 37℃ and 2h recovery phase at 22℃, GUS activity was about 80 fold greater than that before heat shock. Multiple heat-shock treatments showed that this system was heat reinducible. This new system can be applied in numerous and various applications.



Key wordsArabidopsis      Conditional gene expression      Heat-shock      AtHSP17.6-C2 promoter      GUS     
Received: 21 January 2010      Published: 12 June 2010
Cite this article:

CENG Wei-Jun, WANG Shui-Beng, LI Xiao-Fang, XU Ping, WANG Rui-Gang. Clonning the Promoter of AtHsp17.6-C2 and its Heat Inducible Kinetics. China Biotechnology, 2010, 30(06): 89-95.

URL:

https://manu60.magtech.com.cn/biotech/Q786     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I06/89

[1] Moore I, Glweiler L, Grosskopf D. et al. A transcription activation system for regulated gene expression in transgenic plants. Plant Biology ,1998, 95(1): 376381. 
[2] Tang Wei, Luo Xiaoyan, Samuels V. Regulated gene expression with promoters responding to inducers. Plant Science, 2004,166(4): 827834. 
[3] Andersen S U, Cvitanich C, Hougaard B K. et al.The glucocorticoidinducible GVG system causes severe growth defects in both root and shoot of the model legume Lotus japonicus. Mol Plant Microb Interact, 2003,16(12):10691076. 
[4] Amirsadeghi S, McDonald A E, Vanlerberghe G C. A glucocorticoidinducible gene expression system can cause growth defects in tobacco. Planta ,2007, 226(2):453463. 
[5] Vierling E. The roles of heat shock proteins in plants.Annu Rev Plant Physiol Plant Mol Biol,1991, 42:579620. 
[6] Waters E R, Lee G J, Vierling E. Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot,1996,47(296): 325338. 
[7] Sun Weining, Bernard C, Cotte B, et al. AtHSP17.6A, encoding a small heatshock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal,2001, 27(5): 407415. 
[8] Sun Weining, Montagu M V, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta, 2002(1),1577(1):19. 
[9] Luo Keming, Sun Min, Deng Wei,et al. Excision of selectable marker gene from transgenic tobacco using the GMgenedeletor system regulated by a heatinducible promoter. Biotechnol Lett,2008,30(7):12951302. 
[10] Liu Haikun, Yang Chao, Wei Zhiming. Heat shockregulated site specific excision of extraneous DNA in transgenic plants.Plant Sci, 2005,168(4):9971003. 
[11] Monciardini P, Podini D, Marmiroli N. Exotic gene expression in transgenic plants as tool for monitoring environmental pollution. Chemosphere, 1998, 37(1415): 27612772. 
[12] Matsuhara S, Jingu F, Takahashi T. et al. Heatshock tagging: a simple method for expression and isolation of plant genome DNA flanked by TDNA insertions. Plant Journal ,2000,22(1):7986. 
[13] Lee K T, Chen S C, Chiang B L, et al. Heatinducible production of βglucuronidase in tobacco hairy root cultures. Appl Microbiol Biotechnol,2007, 73(5):10471053. 
[14] Chen S C, Liu H W, Lee K T, et al. Highefficiency Agrobacterium rhizogenesmediated transformation of heat inducible sHSP18.2GUS in Nicotiana tabacum. Plant Cell Rep,2007, 26(1):2937. 
[15] Chung M H, Chen M K, Pan Shumei. Floral spray transformation can efficiently generate Arabidopsis transgenic plants.Transgenic Res,2000,9(6):471476. 
[16] Jefferson R A.Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep,1987, 5(4):387405. 
[17] Queitsch C, Hong S W, Vierling E. et al. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell, 2000,12(4): 479492. 
[18] Zuo Jianru, Niu Qiwen, Chua N H. An estrogen receptorbased transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal,2000,24(2):265273. 
[19] Tawa V S, Dinkins R D, Palli S R, et al. Development of a methoxyfenozideresponsive gene switch for applications in plants. The Plant Journal,2006, 45(3):457469. 
[20] Padidam M, Gore M, Lily D, et al. Chemicalinducible, ecdysone receptorbased gene expression system for plants. Transgenic Research ,2003,12(1): 101109. 
[21] Roslan H A, Salter M G, Wood C D, et al. Characterization of the ethanolinducible alc geneexpression system in Arabidopsis thaliana. The Plant Journal ,2001, 28(2): 225235. 
[22] Charng Y Y, Liu H C,Liu N Y,et al. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiology ,2006,140(4): 12971305. 
[23] Padidam M. Chemically regulated gene expression in plants. Current Opinion in Plant Biology ,2003, 6(2):169177.

[1] YANG Fei-yun,YANG Tian-rui,LIU Kun,CUI Shuang,WANG Rui-gang,LI Guo-jing. Flavonoids Metabolism and Antimicrobial Activity of Arabidopsis Heterologous Expressing CiRS Gene[J]. China Biotechnology, 2019, 39(11): 22-30.
[2] Fei-yun YANG,Yan-yan WU,Shuang CUI,Xiu-juan ZHANG,Rui-gang WANG,Guo-jing LI. Heterologous Expression of CiRS Gene Eenhances the Antioxidant Capacity of Arabidopsis by Increasing the Content of Resveratrol[J]. China Biotechnology, 2017, 37(12): 27-33.
[3] HOU Bing-xiao, LIU Shan-na, WANG Bin-bin, ZHU Hong-ji, QIAO Jian-jun. Advances on Regulatory Mechanism of Heat-shock Proteins[J]. China Biotechnology, 2016, 36(9): 87-93.
[4] YU Xiu-min, YUE Wen-ran, ZHANG Yan-na, YANG Fei-yun, WANG Rui-gang, LI Guo-jing, YANG Qi. Heterologous of CkLEA1 Gene Enhanced Tolerance to Abiotic Stress in Arabidopsis[J]. China Biotechnology, 2016, 36(10): 28-34.
[5] AI Jun, JIANG Chao, LIU Min, WANG Xiao-yan, TIAN Hai-shan, LI Xiao-kun. Two Oleosins Flanking the KGF-2 Improve the Expression Level of KGF-2 in Arabidopsis thaliana and Its Activity Analysis[J]. China Biotechnology, 2015, 35(1): 21-26.
[6] YAN Jv-fen, QI Ning-bo, WANG Su-ping, ZHAO Jian-feng, YANG Shu-lin. Mutagenesis and Mutant Genetic Stability of the Endophytic Fungus Gibberella moniliformis EZG0807 from Curcuma wenyujin[J]. China Biotechnology, 2014, 34(5): 23-29.
[7] YU Xin-xin, GAO Jin-jun, LI Yong, LI Jing. Transcriptome Analysis of Arabidopsis thaliana and Changes of Glucosinolates Metabolism Pathway Induced by Flg22[J]. China Biotechnology, 2014, 34(5): 30-38.
[8] WAN Yong-qing, LI Rui-li, ZOU Bo, WAN Dong-li, WANG Rui-gang, LI Guo-jing. Subcellular Localization and Functional Studying of SCBP60g in Arabidopsis[J]. China Biotechnology, 2013, 33(9): 31-37.
[9] YAN Ju-fen, QI Ning-bo, WANG Su-ping, GAI Li-li, YANG Shu-lin. Identification and Biological Characteristics of an Active Endophytic Fungus EZG0807[J]. China Biotechnology, 2013, 33(10): 51-58.
[10] LI Mei-yu, LI Rui, YU Min, WANG Sheng-hua, CHEN Fang. Optimization of Genetic Transformation Conditions in Pogonatherum paniceum Mediated by Agrobactrium tumefaciens[J]. China Biotechnology, 2013, 33(1): 41-46.
[11] HE Xiao-bing, JIA Huai-jie, JING Zhi-zhong. Innate Immune Recognition of the Pathogenic Fungus by Toll-Like Receptors[J]. China Biotechnology, 2012, 32(12): 86-92.
[12] GUO Sen, WU Dan, CHEN Sheng, WU Jing, CHEN Jian. Fermentation Optimization on Flask-scale and Secretional Expression of Recombinant Cutinase-CBM in E.coli[J]. China Biotechnology, 2011, 31(9): 55-61.
[13] LIU Xin-xing, CHEN Chao. De Novo Assembly of Allotetraploid Arabidopsis suecica Transcriptome using Short Reads for Gene Discovery and Marker Identification[J]. China Biotechnology, 2011, 31(7): 45-53.
[14] LI Xia, LIU Jia-jia, CHEN Jian-hua, LUAN Ming-bao, YIN Zhen-zhen, YANG Dong-liang. Screening of Camptothecin Production and SRAP Analysis of Endophytic Fungi from Camptotheca acuminata Decne[J]. China Biotechnology, 2011, 31(7): 60-64.
[15] CUI Dong-qing, YE Mei-xia, LIU Jun-mei, LI Hao, ZHANG Zhi-yi, AN Xin-min. Cloning and Transient Expression Analysis of PtSEP2 Promoter from Populus tomentosa[J]. China Biotechnology, 2011, 31(5): 42-47.