Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (10): 28-34    DOI: 10.13523/j.cb.20161005
    
Heterologous of CkLEA1 Gene Enhanced Tolerance to Abiotic Stress in Arabidopsis
YU Xiu-min, YUE Wen-ran, ZHANG Yan-na, YANG Fei-yun, WANG Rui-gang, LI Guo-jing, YANG Qi
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
Download: HTML   PDF(1061KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Plants are exposed to different abiotic stresses that affect growth, development, and productivity. Previous studies have shown that late embryogenesis abundant (LEA) proteins play protective roles in plant adaptation to abiotic stresses. Based on previous study, CkLEA1 (GenBank accession number: KC309408), a LEA gene isolated from Caragana korshinskii, was transferred into Arabidopsis. The transgene expression was detected by quantitative real-time PCR and three independent transgeniclines with different transgene expression level were selected for further analysis. CkLEA1 transgenic lines germinated more quickly than the wild-type on medium containing 200 mmol/L NaCl or 400 mmol/L mannitol. After drought stress treatment, the CkLEA1 transgenic lines were more resistance to drought stress and exhibited a significantly higher survival ratio. Meanwhile, transgenic lines lost water slow than the wild-type under dehydration treatment, accompanied with less accumulation of malondialdehyde (MDA) and increased superoxide dismutase (SOD) activities as well as glutathione (GSH) content. Taken together, these results indicated that CkLEA1 improved tolerance to salt and osmotic treatments during seed germination and increased tolerance to drought stress during seedling growth.



Key wordsLate embryogenesis abundant proteins      Transgenic Arabidopsis      Abiotic stress      Caragana korshinskii     
Received: 12 April 2016      Published: 25 October 2016
ZTFLH:  Q782  
Cite this article:

YU Xiu-min, YUE Wen-ran, ZHANG Yan-na, YANG Fei-yun, WANG Rui-gang, LI Guo-jing, YANG Qi. Heterologous of CkLEA1 Gene Enhanced Tolerance to Abiotic Stress in Arabidopsis. China Biotechnology, 2016, 36(10): 28-34.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161005     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I10/28

[1] Dure L III, Greenway S C, Galau G A. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981, 20(14): 4162-4168.
[2] Close T J, Kortt A A, Chandler P M. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol, 1989, 13(1): 95-108.
[3] Finkelstein R R. Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryogenesis-abundant (lea) gene. Mol Gen Genet, 1993, 238(3): 401-408.
[4] Hsing Y C, Chen Z Y, Shih M D, et al. Unusual sequences of group 3 LEA mRNA inducible by maturation or drying in soybean seeds. Plant Mol Biol, 1995, 29(4): 863-868.
[5] Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9: 118.
[6] Lan T, Gao J, Zeng Q Y. Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa. Tree Genet Genomes, 2013, 9(1): 253-264.
[7] Tunnacliffe A, Wise M J. The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007, 94(10): 791-812.
[8] Shih M D, Hoekstra F A, Hsing Y I, Late embryogenesis abundant proteins. Adv Bot Res, 2008, 48: 211-255.
[9] Shao H B, Liang Z S, Shao M A. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids and Surfaces B: Biointerfaces, 2005, 45(3): 131-135.
[10] Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110(1): 249-257.
[11] Zhang X, Lu S, Jiang C, et al. RcLEA, a late embryogenesis abundant protein gene isolated from Rosa chinensis, confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses. Plant Mol Biol, 2014, 85(4): 333-347.
[12] Wang M, Li P, Li C, et al. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biology, 2014, 14: 290.
[13] Jia F J, Qi S D, Li H, et al. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance. Biochem Biophys Res Commun, 2014, 454(4): 505-511.
[14] Xiao S C, Xiao H L, Peng X M, et al. Dendroecological assessment of Korshinsk peashrub (Caragana korshinskii Kom.) from the perspective of interactions among growth, climate, and topography in the western Loess Plateau, China. Dendrochronologia, 2015, 33: 61-68.
[15] Xu D H, Fang X W, Su P X, et al. Ecophysiological responses of Caragana korshinskii Kom. under extreme drought stress: Leaf abscission and stem survives. Photosynthetica, 2012, 50(4): 541-548.
[16] 杨杞, 张涛, 王颖, 等. 干旱胁迫下柠条锦鸡儿叶片SSH文库构建及 CkWRKY1 基因克隆, 林业科学, 2013, 49(7): 62-68. Yang Q, Zhang T, Wang Y, et al. Construction of a suppression subtractive hybridization library of Caragana korshinskii under drought stress and cloning of CkWRKY1 gene. Scientia Silvae Sinicae, 2013, 49 (7), 62-68.
[17] 杨杞, 尹佳佳, 王颖, 等. 柠条锦鸡儿 CkLEA1 基因克隆及表达分析. 中国生物工程杂志, 2013, 33(5): 93-99. Yang Q, Yin J J, Wang Y, et al. Cloning and expression analysis of CkLEA1 gene in Caragana korshinskii Kom. China Biotechnology, 2013, 33(5): 93-99.
[18] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16(6): 735-743.
[19] Sun X L, Rikkerink E H, Jones W T, et al. Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell, 2013, 25(1): 38-55.
[20] Grelet J, Benamar A, Teyssier E, et al. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol, 2005, 137(1): 157-167.
[21] Chakrabortee S, Tripathi R, Watson M, et al. Intrinsically disordered proteins as molecular shields. Mol Biosyst, 2012, 8(1): 210-219.
[22] Zhao P S, Liu F, Ma M, et al. Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Mol Biol, 2011, 45(5): 785-796.
[23] Lim C W, Lim S, Baek W, et al. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response. Physiologia Plantarum, 2015, 154(4): 526-542.
[24] DaCosta M, Huang B R. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. J Am Soc Hortic Sci, 2007, 132(3): 319-326.
[25] Liu Y, Wang L, Xing X, et al. ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol, 2013, 54(6): 944-959.
[26] Choudhury S, Panda P, Sahoo L, et al. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav, 2013, 8(4): e23681.
[27] Liu H, Yu C, Li H, et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Science, 2015, 231: 198-211.
[28] Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem, 2004, 42(7): 657-662.

[1] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[2] GAO Fei, ZHOU Jing, LIU Xiao-tong, LI Cheng-lei, YAO Hui-peng, ZHAO Hai-xia, WU Qi . Cloning and Expression Analysis One Zinc Finger Protein Gene FtLOL1 in Fagopyrum tataricum: Effect of Abiotic Stress[J]. China Biotechnology, 2015, 35(8): 44-50.
[3] LI Gao, YANG Qi, ZHANG Ye, WANG Yin, ZHANG Tao, WANG Rui-gang, LI Guo-jing. Cloning and Analysis of the Gene Encoding Cinnamoyl-CoA Reductase from Caragana korshinkii Kom[J]. China Biotechnology, 2014, 34(1): 50-56.
[4] YANG Qi, YIN Jia-jia, WANG Yin, WANG Rui-gang, LI Guo-jing. Cloning and Expression Analysis of CkLEA1 Gene in Caragana korshinskii Kom[J]. China Biotechnology, 2013, 33(5): 93-99.
[5] LI Rui, WANG Wen-guo, FAN Lin-hong, WANG Sheng-hua. Abiotic Stress Tolerance Analysis Two Alternatively Spliced Isoforms of LEA3 Gene from Pogonatherum paniceum in Yeast[J]. China Biotechnology, 2012, 32(08): 30-35.
[6] WAN Bing-liang, ZHA Zhong-ping, DU Xue-shu. Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 22-32.
[7] . Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 0-0.
[8] DENG Cheng-Ju, ZHANG Jian-Bin, GU Cai-Gong, JIN Zhi-Jiang, XU Bi-Yu. Enhancement of Tolerance to Abiotic Stress of Saccharomyces cerevisiae Transformed by a Gene Encoding Glyoxalase from Banana[J]. China Biotechnology, 2010, 30(08): 22-26.
[9] HU Fa-Chi, LIU Cui-Fang, JU Jie, WANG Yo-Hua, LI Wei, CHEN Shen-Bei. Research Progress in Plant Cuticle Responses to Abiotic Stresses[J]. China Biotechnology, 2010, 30(08): 126-130.