Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (12): 114-118    DOI:
    
Application of Tn5 Transposon Mutagenesis Technology in Molecular and Genetic Researches of Gramnegative Bacteria
NIAN Hong-juan,CHEN Li-mei,LI Kun-zhi
Biotechnology Research Center, Kunming University of Science and Technology,Kunming 650224,China
Download: HTML   PDF(444KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With development of wide-host-range vector systems, Tn5 transposon and its derivative vectors have been widely applied to genetic research of gram-negative bacteria.The applications of Tn5 transposon mutagenesis technology to genetic researches of bacteria were briefly discussed, including researches on biological control mechanisms of biocontrol bacteria, identification of bacterial essential genes, discovering virulence genes of bacterial pathogens, characterization of metabolism regulatory genes and genetic improvements of bacteria.



Key wordsTn5 transposon mutagenesis      Biocontrol mechanism      Bacterial essential geneVirulence gene      Metabolism regulatory gene      Bacteria improvements     
Received: 06 May 2009      Published: 21 December 2009
ZTFLH:  Q819  
Cite this article:

NIAN Hong-Juan, CHEN Li-Mei, LI Hun-Zhi. Application of Tn5 Transposon Mutagenesis Technology in Molecular and Genetic Researches of Gramnegative Bacteria. China Biotechnology, 2009, 29(12): 114-118.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I12/114

[1]   唐江涛, 何勇强, 唐纪良. 细菌转座子Tn5转座机理的研究进展. 广西农业生物科学, 2003, 22(4): 316~321 Tang J T, He Y Q, Tang J L. Journal of Guangxi Agricultural and Biological Science, 2003, 22(4): 316~321
[2]   Pierson III L S, Thomashow L S. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 3084. Mol PlantMicrobe Interact, 1992, 5: 330~339
[3]   Philip E H, Steven H, Stephen T L, et al. Four genes from Pseudomonas fluorescens that encode the biosynthesis of Pyrrolnitrin. Appl Environ Microbiol, 1997, 63: 2147~2154
[4]   Christine B, Sandra M, Theresa P, et al. Impact of mutations in hemA and hemH gene on pyoverdine production by Pseudomonas fluorescens ATCC17400. FEMS Microbiol Lett, 2001, 205: 57~63
[5]   MarekKozaczuk M, Rogalski J, Skorupska A. The nadA gene of Pseudomonas fluorescens PGPR strain 267.1. Curr Microbiol, 2005, 51(2): 122~126
[6]   Donald Y K, Ralph M R, Jeffrey D P, et al. A clp gene homologue belonging to the Cr Pgene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl Environ Microbiol, 2005, 71: 261~269
[7]   Hongjuan Nian, Jie Zhang, Fuping Song, et al. Isolation of transposon mutants and characterization of genes involved in biofilm formation by Pseudomonas fluorescens. Arch Microbiol, 2007, 188(3): 205~213
[8]   Judson N, Mekalanos J J.TnAraOut, a transposonbased approach to identify and characterize essential bacterial genes. Nat Biotechnol, 2000, 18:740~745
[9]   PGordon B, Paul D H, Tim C E, et al. Evidence and characterization of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of Pseudomonas fluorescens. Can J Microbiol, 2001, 47: 294~301
[10]   Park Y J, Song E S, Kim Y T, et al. Analysis of virulence and growth of a purine auxotrophic mutant of Xanthomonas oryzae pathovar oryzae. FEMS Microbiol Lett, 2007, 276(1):55~59
[11]   Mellgren E M, Kloek A P, Kunkel B N. Mqo, a tricarboxylic acid cycle enzyme, is required for virulence of Pseudomonas syringae pv. tomato strain DC3000 on Arabidopsis thaliana.J Bacteriol, 2009, 191(9):3132~3141
[12]   Goldman B S, Kranz R G. ABC transporters associated with cytochrome c biogenesis. Res Microbiol, 2001,152: 323~329
[13]   Wu Q, Pei J, Turse C, et al. Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol, 2006,18(6):102
[14]   Antje K, Paul V, Claudia W, et al. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S313. J Bacteriol, 2000, 182: 2869~2878
[15]   Takayukl E, Hiroshi H, Hideaki N, et al. The δ54dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Mol Microbiol, 2005, 55: 897~911
[16]   Leo B, Aldo A, Michael H R, et al. Inactivation of gltB abolishes expression of the assimilatory nitrate reductase gene(nasB)in Pseudomonas putida KT2442. J Bacteriol, 2000, 182: 3368~3376
[17]   Manuel E U, JuanLuis R. Expression of a Pseudomonas putida aminotransferase involved in lysine catabolish is induced in the rhizosphere. Appl Environ Microbiol, 2001, 67: 5219~5224
[18]   Jasper K, Riekje B, Ineke K G, et al. Transposon mutation in the flagella biosynthetic pathway of the solventtolerant Pseudomonas putida S12 result in a decreased expression of solvent efflux genes. FEMS Microbiol Lett, 2001, 198: 117~122
[19]   Goff M, NikodinovicRunic J, O'Connor K E. Characterization of temperaturesensitive and lipopolysaccharide overproducing transposon mutants of Pseudomonas putida CA3 affected in PHA accumulation. FEMS Microbiol Lett, 2009, 292(2):297~305
[20]   张杰, 彭于发, 赵建周,等. 用接合转移方法构建杀虫防病荧光假单胞菌. 农业生物技术学报, 1995, 3(2):75~81 Zhang J, Peng Y F, Zhao J Z, et al. Journal of Agricultural Biotechnology, 1995, 3(2):75~81
[21]   唐朝荣, 孙福在, 赵廷昌. 利用细菌冰核基因构建促冻杀虫基因工程菌. 科学通报, 2003, 48: 64~69 Tang C R, Sun F Z, Zhao T C. Chinese Science Bulletin, 2003, 48: 64~69
[22]   周洪友, 魏海雷, 刘西莉,等. 通过染色体整合抗生素2,4二乙酰基间苯三酚合成基因提高荧光假单胞菌生防能力. 科学通报, 2005, 50: 766~771 Zhou H Y, Wei H L, Liu X L, et al. Chinese Science Bulletin, 2005, 50: 766~771
[23]   Wu J, Xu J, Hong Q,et al. Construction of a genetically engineered and stable strain of degrading gammahexachlorocyclohexane and carbendazim by transposon miniTn5.Acta Microbiologica Sinica, 2008, 48(1):45~50
[1] WU Qing, LIU Hui-yan, FANG Hai-tian, HE Jian-guo, HE Xiao-guang, YU Li-nan, WANG Meng-jiao. Metabolic Control Fermentation Mechanism and Breeding Strategies of Cytidine Excessive Biosynthesis in Bacillus amyloliquefaciens[J]. China Biotechnology, 2015, 35(9): 122-127.
[2] WANG Hong-su, GUAN Gui-jing, LIU Jin-xiang. Application of Alexa Fluor in Cytology and Molecular Biology[J]. China Biotechnology, 2015, 35(9): 71-77.
[3] ZHOU Li-jun, LIU Wen-juan, QI Yong-hao, LI Miao. SOCS3 Negatively Regulates AKT through JNK and STAT3 Signal Pathways[J]. China Biotechnology, 2015, 35(9): 50-56.
[4] LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy[J]. China Biotechnology, 2015, 35(9): 57-65.
[5] WEI Yan, WANG Huan-qin, WU Meng, ZHANG Feng-juan, LIANG Guo-dong, ZHU Wu-yang. Construction and Identification of the Cell Line for Detecting Flaviviruses[J]. China Biotechnology, 2015, 35(9): 35-41.
[6] ZHAO Yang, TIAN Hai-shan, LI Xiao-kun, JIANG Chao . The Research Progress of Fibroblast Growth Factor 20[J]. China Biotechnology, 2015, 35(8): 103-108.
[7] LI Hong-chang, YUAN Lin, ZHANG Ling-qiang . Construction of Transgenic Mice and Phenotypic Analysis of Tumor Suppressor PTEN[J]. China Biotechnology, 2015, 35(8): 1-8.
[8] GUO Wei-ting, ZHANG Hui, ZHA Dong-feng, HUANG Han-feng, HUANG Jing, GAO Hong-liang, CHANG Zhong-yi, JIN Ming-fei, LU Wei . A Rapid Method of Screening for Thermostable Transglutaminase from Streptomyces mobaraensis[J]. China Biotechnology, 2015, 35(8): 83-89.
[9] KANG Xue-jun, YANG Yi-shu . Research Progress on in vitro Models of HIV-1 Latency[J]. China Biotechnology, 2015, 35(8): 96-102.
[10] ZHU Zhi-jian, LIAN Kai-qi, YANG Fan, ZHANG Wei, ZHENG Hai-xue, YANG Xiao-pu . Establishment of a Stable CHO-677 Cell Line Expressing Murine αvβ6 Integrin[J]. China Biotechnology, 2015, 35(8): 23-29.
[11] HUANG Peng, LI Wen-shu, XIE Jun, BAO Jian-ying, CAO Xiao-e, YU Long, XU Yi-xin . Expression of Human Lysozyme-like Protein 6 in Pichia pastoris and Analysis of Enzymatic Activity of the Protein[J]. China Biotechnology, 2015, 35(8): 30-37.
[12] REN Qin, GUO Zhi-hong, WANG Ya-jun, XIE Zhong-kui, WANG Ruo-yu. RNA Interference and Its Application in Enhancing Crop Resistance Against Harmful Eukaryotes[J]. China Biotechnology, 2015, 35(6): 80-89.
[13] LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals[J]. China Biotechnology, 2015, 35(6): 109-115.
[14] ZHANG Chao, XIANG Li-na, CHEN De-pei, LÜ Xin-xin, ZHAO Yi-tong, WANG Lu-yao, XIAO Jian, ZHANG Hong-yu. The Development of the Study on bFGF Promote the Nerve Injury Repair[J]. China Biotechnology, 2015, 35(6): 75-79.
[15] JIA Cui-li, ZHANG Hua-wei, WANG Bin-bin, ZHU Hong-ji, QIAO Jian-jun. Advances in Research on Natural Competence of Gram-positive Bacteria and Its Physiological Properties[J]. China Biotechnology, 2015, 35(6): 90-100.