Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (12): 111-118    DOI: 10.13523/j.cb.20171216
Orginal Article     
Optimization of Bioethanol Production by Brown Algae
Xin-tong CHI1,2,Shao-ming MAO1,2*()
1 Forestry Biotechnology Hunan Key Laboratories,Changsha 410004,China
2 College of Life Sciences and Technology, Central South University of Forestry and Technology,Changsha 410004,China
Download: HTML   PDF(429KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As the third-generation bioethanol feedstocks, brown algae have received attention because of advantages with high carbohydrate content, short production cycle and haven’t compete with grain for land. However, the improvement of ethanol yield on the basis of low cost is an urgent problem in the actual production of bioethanol. The technical difficulties of large-scale bioethanol production from brown algae were focused on, the research progress of the pretreatment technology and the saccharification and fermentation technology were reviewed, and the prospects of the new potential trend of brown algae bioethanol were also provided.



Key wordsBioethanol      Brown algae      Alginate      Saccharomyces cerevisiae     
Received: 12 June 2017      Published: 16 December 2017
ZTFLH:  Q819  
Cite this article:

Xin-tong CHI,Shao-ming MAO. Optimization of Bioethanol Production by Brown Algae. China Biotechnology, 2017, 37(12): 111-118.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171216     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I12/111

藻类品种 预处理方式 还原糖
产率
发酵菌株 生物乙
醇产率
参考
文献
褐藻
Saccharina japonica(海带) 0.06%H2SO4, 170℃, 20min 29.10% Saccharomyces cerevisiae 6.65g/L [18]
Padina tetrastromatica(四叠团扇藻) 1% H2SO4,121℃, 45min 0.32g/g S.cerevisiae 0.66g/g [19]
Sargassum vulgare(普通马尾藻) 2% H2SO4,121℃, 45min 0.44g/g S.cerevisiae 0.38g/g [19]
Sargassum ilicifolium(冬青叶马尾藻) 1% H2SO4,121℃,海洋菌群处理15min 11.44g/L Meyerozyma guilliermondii 2.74g/L [35]
Ascophyllum nodosum (岩衣藻) 0.2mol/L H2SO4 , 121℃ , 20min. 50℃,150r/min搅拌酶解18h 15.45g/L Scheffersomyces(Pichia) stipitis 2.4 g/L [34]
Laminaria digitata(掌状昆布) 0.2mol/L H2SO4 , 121℃,20min. 50℃,150r/min搅拌18h酶解 29.3g/L Kluyveromyces marxianus 6.0 g/L [34]
红藻
Gracilaria corticata(江蓠) 1% H2SO4,121℃,海洋菌群处理15min 9.25g/L M.guilliermondii 1.72g/L [35]
Kappaphycus alvarezii(长心卡帕藻) 180mmol/L H2SO4 , 140℃,5min. 38.3g/L K.marxianus 16.0g/L [8]
绿藻
Ulva prolifera (浒苔) 0.2%H2O2, 50℃, pH=4,12h 0.42g/g S.cerevisiae 31.4% [9]
Ulva fasciata(石莼) 离子液处理24h.40℃, pH=4,酶解24h 112mg/g S.cerevisiae 0.47g/g [10]
Table 1 Different species of algae to produce bioethanol
[1]   Nigam P S, Singh A . Production of liquid biofuels from renewable resources. Progress in Energy & Combustion Science, 2011,37(1):52-68.
doi: 10.1016/j.pecs.2010.01.003
[2]   Kroger M, Muller-Langer F . Review on possible algal-biofuel production processes. Biofuels, 2012,3(3), 333-349.
doi: 10.4155/bfs.12.14
[3]   John R P, Anisha G S, Nampoothiri K M , et al. Micro and macro algal biomass: a renewable source for bioethanol. Bioresource Technology, 2011,102(1):186-193.
doi: 10.1016/j.biortech.2010.06.139 pmid: 20663661
[4]   Schmidt B J, Lin-Schmidt X, Chamberlin A , et al. Metabolic systems analysis to advance algal biotechnology. Biotechnology Journal, 2010,5(7):660-670.
doi: 10.1002/biot.201000129 pmid: 20665641
[5]   Rebours C, Marinho-Soriano E, Zertuche-Gonzalez J A , et al. Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. Journal of Applied Phycology, 2014,26(5):1939-1951.
doi: 10.1007/s10811-014-0304-8 pmid: 25346571
[6]   Vassilev S V, Vassileva C G . Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel, 2016,181:1-33.
doi: 10.1016/j.fuel.2016.04.106
[7]   Zhang W, Zhang J, Cui H , et al. The isolation and performance studies of an alginate degrading and ethanol producing strain. Chemical and Biochemical Engineering Quarterly, 2014,28(3):391-398.
doi: 10.15255/CABEQ.2013.1888
[8]   Ra C H, Nguyen T H, Jeong G T , et al. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresource Technology, 2016,209:66-72.
doi: 10.1016/j.biortech.2016.02.106 pmid: 26950757
[9]   Li Y P, Cui J F, Zhang G L , et al. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresource Technology, 2016,214:144-149.
doi: 10.1016/j.biortech.2016.04.090 pmid: 27132221
[10]   Trivedi N, Reddy C R, Radulovich R , et al. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Research-Biomass Biofuels and Bioproducts, 2015,9:48-54.
doi: 10.1016/j.algal.2015.02.025
[11]   Abdallah Q A, Nixon B T, Fortwendel J R . The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Frontiers in Energy Research, 2016,4:36.
doi: 10.3389/fenrg.2016.00036
[12]   Enquist-Newman M, Faust A M, Bravo D D , et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2014,505(7482):239-243.
doi: 10.1038/nature12771 pmid: 24291791
[13]   Deniaud-Bouet E, Kervarec N, Michel G , et al. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Annals of Botany, 2014,114(6):1203-1216.
doi: 10.1093/aob/mcu096 pmid: 24875633
[14]   Lee K Y, Mooney D J . Alginate: properties and biomedical applications. Progress in Polymer Science, 2012,37(1):106-126.
doi: 10.1016/j.progpolymsci.2011.06.003 pmid: 22125349
[15]   Wang D, Kim D H, Kim K H . Effective production of fermentable sugars from brown macroalgae biomass. Applied Microbiology & Biotechnology, 2016,100(22):9439-9450.
doi: 10.1007/s00253-016-7857-1 pmid: 27687993
[16]   Fasahati P, Woo H C, Liu J J . Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Applied Energy, 2015,139:175-187.
doi: 10.1016/j.apenergy.2014.11.032
[17]   Sirajunnisa A R, Surendhiran D . Algae — a quintessential and positive resource of bioethanol production: A comprehensive review. Renewable & Sustainable Energy Reviews, 2016,66:248-267.
doi: 10.1016/j.rser.2016.07.024
[18]   Lee J Y, Li P, Lee J , et al. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresource Technology, 2013,127:119-125.
doi: 10.1016/j.biortech.2012.09.122 pmid: 23131631
[19]   Durbha S, Dev Tavva S, Guntuku G , et al. Ethanol production from the biomass of two marine algae, Padina tetrastromatica and Sargassum vulgare. American Journal of Biomass and Bioenergy, 2016,5(1):31-42.
[20]   Ravanal M C, Pezoa-Conte R, von Schoultz S, , et al. Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Research-Biomass Biofuels and Bioproducts, 2016,13:141-147.
[21]   Wang D, Yun E J, Kim S , et al. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess and Biosystems Engineering, 2016,39(6):959-966.
doi: 10.1007/s00449-016-1575-z pmid: 26923145
[22]   Sharma S, Horn S J . Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresource Technology, 2016,213:155-161.
doi: 10.1016/j.biortech.2016.02.090 pmid: 26961713
[23]   Manns D, Andersen S K, Saake B , et al. Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment. Journal of Applied Phycology, 2015,28(2):1287-1294.
doi: 10.1007/s10811-015-0663-9
[24]   Mohapatra B R . Kinetic and thermodynamic properties of alginate lyase and cellulose coproduced by Exiguobacterium species Alg-S5. International Journal of Biological Macromolecules, 2017,98:103-110.
doi: 10.1016/j.ijbiomac.2017.01.091 pmid: 28122206
[25]   Bak J S . Downstream optimization of fungal-based simultaneous saccharification and fermentation relevant to lignocellulosic ethanol production. SpringerPlus, 2015,4(1):47.
doi: 10.1186/s40064-015-0825-x pmid: 25713757
[26]   Chung B Y, Lee J T, Bai H W , et al. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production. Radiation Physics and Chemistry, 2012,81(8):1003-1007.
doi: 10.1016/j.radphyschem.2013.05.056
[27]   Lee B M, Jeun J P, Kang P H , et al. Enhanced enzymatic hydrolysis of kenaf core using irradiation and dilute acid. Radiation Physics and Chemistry, 2017,130:216-220.
doi: 10.1016/j.radphyschem.2016.08.026
[28]   Yuan Y, Macquarrie D J . Microwave assisted acid hydrolysis of brown seaweed Ascophyllum nodosum for bioethanol production and characterization of alga residue. ACS Sustainable Chemistry & Engineering, 2015,3(7):1359-1365.
doi: 10.1021/acssuschemeng.5b00094
[29]   Yoon M, Choi J I, Lee J W , et al. Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation. Radiation Physics and Chemistry, 2012,81(8):999-1002.
doi: 10.1016/j.radphyschem.2011.11.035
[30]   Hou X, Hansen J H, Bjerre A B . Integrated bioethanol and protein production from brown seaweed Laminaria digitata. Bioresource Technology, 2015,197:310-317.
doi: 10.1016/j.biortech.2015.08.091 pmid: 26342344
[31]   Jelynne P, Tamayo , Del Rosario E J , Chemical analysis and utilization of Sargassum sp. as substrate for ethanol production. Energy Environ, 2014,5(2):202-208.
doi: 10.5829/idosi.ijee.2014.05.02.12
[32]   Wei N, Quarterman J, Jin Y S , et al. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends in Biotechnology, 2013,31(2):70-77.
doi: 10.1016/j.tibtech.2012.10.009 pmid: 23245657
[33]   Song M Y, Pham H D, Seon J Y , et al. Marine brown algae: a conundrum answer for sustainable biofuels production. Renewable & Sustainable Energy Reviews, 2015,50:782-792.
doi: 10.1016/j.rser.2015.05.021
[34]   Jung K A, Lim S R, Kim Y , et al. Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 2013,135:182-190.
doi: 10.1016/j.biortech.2012.10.025 pmid: 23186669
[35]   Obata O, Akunna J, Bockhorn H , et al. Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol, 2016,2(1):134-145.
doi: 10.1515/bioeth-2016-0010
[36]   Sudhakar M P, Jegatheesan A, Poonam C , et al. Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renewable Energy, 2017,105:133-139.
doi: 10.1016/j.renene.2016.12.055
[37]   Ji S Q, Wang B, Lu M , et al. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnology for Biofuels, 2016,9(1):81.
doi: 10.1186/s13068-016-0494-1 pmid: 4818487
[38]   Ji S Q, Wang B, Lu M , et al. Defluviitalea phaphyphila sp nov., a novel thermophilic bacterium that degrades brown algae. Applied and Environmental Microbiology, 2016,82(3):868-877.
doi: 10.1128/AEM.03297-15 pmid: 4725288
[39]   Costa D A, De Souza C J, Costa P S, , et al. Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Applied Microbiology and Biotechnology, 2014,98(8):3829-3840.
doi: 10.1007/s00253-014-5580-3 pmid: 24535257
[40]   Castro R C A, Roberto I C . Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology, 2014,172(3):1553-1564.
doi: 10.1007/s12010-013-0612-5 pmid: 24222495
[41]   Kawai S, Murata K . Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. International Journal of Molecular Sciences, 2016,17(2):145.
doi: 10.3390/ijms17020145 pmid: 4783879
[42]   Wargacki A J, Leonard E, Win M N , et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science, 2012,335(6066):308-313.
doi: 10.1126/science.1214547 pmid: 22267807
[43]   Lee O K, Lee E Y . Sustainable production of bioethanol from renewable brown algae biomass. Biomass & Bioenergy, 2016,92:70-75.
doi: 10.1016/j.biombioe.2016.03.038
[44]   Takagi T, Yokoi T, Shibata T , et al. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Applied Microbiology and Biotechnology, 2015,100(4):1723-1732.
doi: 10.1007/s00253-015-7035-x pmid: 26490549
[45]   Motone K, Takagi T, Sasaki Y , et al. Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. Journal of Biotechnology, 2016,231:129-135.
doi: 10.1016/j.jbiotec.2016.06.002 pmid: 27287535
[1] YUAN Xiao-jing,YIN Hai-meng,FAN Xiao-wei,HE Jun-lin,HAO Shi-lei,JI Jin-gou. Preparation and Wound Repair of Keratin/Sodium Alginate/Polyacrylamide Hydrogel Skin Dressing[J]. China Biotechnology, 2021, 41(8): 17-24.
[2] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[3] ZHANG Zheng-tan,ZHU Jing,XIE Zhi-ping. A Subcellular Localization Survey for All SNARE Proteins in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(10): 44-57.
[4] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[5] Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase[J]. China Biotechnology, 2017, 37(12): 77-83.
[6] LI Heng, ZHU Si-ting, LIU Xu-mei, GONG Jin-song, JIANG Min, XU Zheng-hong, SHI Jin-song. Identification of an Alginate Lyase Producing Strain Halomonas sp. WF6 and Fermentation Optimization[J]. China Biotechnology, 2014, 34(9): 94-101.
[7] QIAN Long, TANG Li-wei, HUANG Shu-shi, Chagan Irbis. Research Progress of Bioethanol from Alginate Fermentation[J]. China Biotechnology, 2013, 33(1): 122-127.
[8] Deng Yong Junmin Fang Fang Chen Yunwei Chen Chunming Wang. The Current Development of Biofuels[J]. China Biotechnology, 2008, 28(8): 142-147.
[9] Wei Cui SHEN Bing-Qian Sheng-Li YANG. Endocytosis of Ca alginate nanocapsules by dendritic cells and function induction[J]. China Biotechnology, 2008, 28(7): 26-31.
[10] Kexiao Zheng Wei Cui SHEN Bing-Qian Sheng-Li YANG. Preparation of Calcium Alginate Nanocapsules with Adjuvant Effect[J]. China Biotechnology, 2008, 28(1): 49-54.
[11] . Induction of Bone Mesenchymal Stem Cells to Form Osteoblast on Alginate Gels[J]. China Biotechnology, 2006, 26(09): 38-42.