Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 44-57    DOI: 10.13523/j.cb.20191006
    
A Subcellular Localization Survey for All SNARE Proteins in Saccharomyces cerevisiae
ZHANG Zheng-tan,ZHU Jing,XIE Zhi-ping()
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology,Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML   PDF(4543KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In eukaryotic cells, protein transport between membrane structures such as endoplasmic reticulum, Golgi, and plasma membrane is mainly achieved via vesicle budding and fusion. The SNARE protein family plays a key role in mediating the fusion of vesicles with the target membrane structure. In the model organism Saccharomyces cerevisiae, systematic studies of SNARE proteins in the whole genome are still lacking. A set of plasmids for the labeling of all 24 SNAREs in S. cerevisiae with GFP are constructed. Most of the plasmids employ endogenous promoters for expression, with only a few mildly overexpressed, thus avoiding potential mislocalization caused by high overexpression. The subcellular localization of each SNARE is verified by co-localization with organelle markers. Results indicate that the localization of three SNAREs differs from those in existing literature: Bos1 localizes to early Golgi; and Snc1 and Bet1 localize to the late Golgi/early endosomes. In addition, Sec9 is detected at the bud tip and septum. This is the first time that the localization of Sec9 in vegetative cells has been observed. It is also the first comprehensive experimental evaluation of yeast SNARE subcellular localization. Furthermore, the constructed plasmids constitute a convenient tool set for future yeast cell biology studies.



Key wordsSNARE      Subcellular localization      Saccharomyces cerevisiae      Colocalization     
Received: 28 March 2019      Published: 12 November 2019
ZTFLH:  Q816  
Corresponding Authors: Zhi-ping XIE     E-mail: zxie@sjtu.edu.cn
Cite this article:

ZHANG Zheng-tan,ZHU Jing,XIE Zhi-ping. A Subcellular Localization Survey for All SNARE Proteins in Saccharomyces cerevisiae. China Biotechnology, 2019, 39(10): 44-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191006     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/44

Primer name Primer sequence
Sec20 pro-F TCCTGCAGCCCGGGGGATCCATTGTTTAATGTGGTCGTTGTAAC
Sec20 pro-R AATTCTTCACCTTTAGACATAATCTTTAATGGCTTTATAGTTTGTT
Sec20-F GGATCCCCGGGTTAATTAACATGGTCGTGACATTTTTGCAGGA
Sec20-R ATACAGTTTTTTGCGGCCGCTCATAGCTCATCATGTGAGACG
Sec22 pro-F TCCTGCAGCCCGGGGGATCCTCATAGATTTATCTTCATATGTTCT
Sec22 pro-R AATTCTTCACCTTTAGACATCCCTACTTAATTGTGAGTGTG
Sec22-F GGATCCCCGGGTTAATTAACATGATAAAGTCAACACTAATCTACA
Sec22-R ATACAGTTTTTTGCGGCCGCCTATTTGAGGAAGATCCACCAG
Use1 pro-F TCCTGCAGCCCGGGGGATCCAAGCCAAATCTGTTACGCACGG
Use1 pro-R AATTCTTCACCTTTAGACATCTTGCCTTGCTATTATGTGTCC
Use1-F GGATCCCCGGGTTAATTAACATGGCTGAAACTTCCAACGAC
Use1-R ATACAGTTTTTTGCGGCCGCTTATAGGGCCGGGAATAATTGAA
Ufe1 pro-F TCCTGCAGCCCGGGGGATCCAGCACCAAAATGCCTCCATTGA
Ufe1 pro-R AATTCTTCACCTTTAGACATGAGTTAATAAGCTCTTCACTGC
Ufe1-F GGATCCCCGGGTTAATTAACATGATGTCTGATTTAACACCAATAT
Ufe1-R ATACAGTTTTTTGCGGCCGCTTAACCTACATAATCTAGGAACAAT
Sed5 pro-F TCCTGCAGCCCGGGGGATCCCTATCGCCTCAAAGAACCACAT
Sed5 pro-R AATTCTTCACCTTTAGACATGGGAGTTGTGTGGTATGGTGA
Sed5-F GGATCCCCGGGTTAATTAACATGAACATAAAGGATAGAACTTCA
Sed5-R ATACAGTTTTTTGCGGCCGCTTAATTGACTAAAACCCAAATAACG
Gos1 pro-F TCCTGCAGCCCGGGGGATCCTGCCTGTTAGACACGAGATGTT
Gos1 pro-R AATTCTTCACCTTTAGACATGTGGTGTGGTTGCTTGTCTGG
Gos1-F GGATCCCCGGGTTAATTAACATGAGCTCACAACCGTCTTTCG
Primer name Primer sequence
Gos1-R ATACAGTTTTTTGCGGCCGCTTACCATGTGAAAAACAAAAACAGT
Bos1 pro-F TCCTGCAGCCCGGGGGATCCACGTCTTCTATATCTGGGTTTTC
Bos1 pro-R AATTCTTCACCTTTAGACATTCCCCCCTCAAATCAATATGATT
Bos1-F GGATCCCCGGGTTAATTAACATGGTATGTTTGATCGCCGGA
Bos1-R ATACAGTTTTTTGCGGCCGCCTATCTTAACCATTTCAACACATAA
Sft1 pro-F TCCTGCAGCCCGGGGGATCCGGCGGAAAGTTAGGCCGACA
Sft1 pro-R AATTCTTCACCTTTAGACATCGCTATGATGATTATATATTACCTT
Sft1-F GGATCCCCGGGTTAATTAACATGTCAAATTCTAGGTATTCTCAG
Sft1-R ATACAGTTTTTTGCGGCCGCCTAAAATAACTTAAACAGGGTATATA
Tlg1 pro-F TCCTGCAGCCCGGGGGATCCGATAGTCCCCCATTTTTTTTTATGT
Tlg1 pro-R AATTCTTCACCTTTAGACATTTGTTAAAGAAAGGATCTTAGCAAT
Tlg1-F GGATCCCCGGGTTAATTAACATGAACAACAGTGAAGATCCGTT
Tlg1-R ATACAGTTTTTTGCGGCCGCTCAAGCAATGAATGCCAAAACTAA
Tlg2 pro-F TCCTGCAGCCCGGGGGATCCCACCCATTTAAATTTGACGATAAA
Tlg2 pro-R AATTCTTCACCTTTAGACATGTTTGTAACGACTGCCTAGATC
Tlg2-F GGATCCCCGGGTTAATTAACATGTTTAGAGATAGAACTAATTTATTT
Tlg2-R ATACAGTTTTTTGCGGCCGCTCAAAGTAGGTCATCCAAAGCAT
Snc1 pro-F TCCTGCAGCCCGGGGGATCCTAATATGTCCTTAGAATGGGGAA
Snc1 pro-R AATTCTTCACCTTTAGACATGGACAATGAATACGTTGCGCTT
Snc1-F GGATCCCCGGGTTAATTAACATGTCGTCATCTACTCCCTTTGA
Snc1-R ATACAGTTTTTTGCGGCCGCCTATCGACTAAAGTGAACAGCAA
Snc2 pro-F TCCTGCAGCCCGGGGGATCCGTGTTTCGTTAGGTGGGCCG
Snc2 pro-R AATTCTTCACCTTTAGACATCGTTGCGCGTTCTTATTTTGTA
Snc2-F GGATCCCCGGGTTAATTAACATGTCGTCATCAGTGCCATACG
Snc2-R ATACAGTTTTTTGCGGCCGCTTAGCTGAAATGGACGACGATAG
Bet1 pro-F TCCTGCAGCCCGGGGGATCCCCAGGCGACGTCAGAGATGA
Bet1 pro-R AATTCTTCACCTTTAGACATCTGTGTAGCCTAGTGTTGTGA
Bet1-F GGATCCCCGGGTTAATTAACATGAGTTCAAGGTATGAGAAATTAT
Bet1-R ATACAGTTTTTTGCGGCCGCTTATGTAATCCATACCCAAAAAAATA
Vam3 pro-F TCCTGCAGCCCGGGGGATCCGAAAACAAGGAAAAAACAACAGAA
Vam3 pro-R AATTCTTCACCTTTAGACATAATCTCAACTTTCTGCAGTGGAT
Vam3-F GGATCCCCGGGTTAATTAACATGTCCTTTTTCGACATCGAAG
Vam3-R ATACAGTTTTTTGCGGCCGCCTAACTTAATACAGCAAGCAATAC
Vam7 pro-F TCCTGCAGCCCGGGGGATCCGCCTATTCTTTCACCAAATTCAG
Vam7 pro-R AATTCTTCACCTTTAGACATCAATATCAATTATCAACCCTTATATG
Vam7-F GGATCCCCGGGTTAATTAACATGGCAGCTAATTCTGTAGGGA
Vam7-R ATACAGTTTTTTGCGGCCGCTCAAGCACTGTTGTTAAAATGTCT
Nyv1 pro-F TCCTGCAGCCCGGGGGATCCAAGGCGGCAAGACTTCAAGAAG
Nyv1 pro-R AATTCTTCACCTTTAGACATTTGGTAAAAATATAAAAGTCCAAT
Nyv1-F GGATCCCCGGGTTAATTAACATGAAACGCTTTAATGGTATGTATA
Nyv1-R ATACAGTTTTTTGCGGCCGCTTACCACAGATAGAAAAACATGAAA
Primer name Primer sequence
Vti1 pro-F TCCTGCAGCCCGGGGGATCCATTGATTATCCTTCAAGTCCATC
Vti1 pro-R AATTCTTCACCTTTAGACATAGTAAGCCATGCAGCAATGTAAA
Vti1-F GGATCCCCGGGTTAATTAACATGAGTTCCCTATTAATATCATACG
Vti1-R ATACAGTTTTTTGCGGCCGCTTATTTAAACTTTGAGAACAAAACTA
Pep12 pro-F TCCTGCAGCCCGGGGGATCCTACTTAGTCCTTTGGTCAAAAATAT
Pep12 pro-R AATTCTTCACCTTTAGACATCTCAACACAATTATTGTAGTAATTTA
Pep12-F GGATCCCCGGGTTAATTAACATGTCGGAAGACGAATTTTTTGG
Pep12-R ATACAGTTTTTTGCGGCCGCTTACAATTTCATAATGAGAAAAATAAAA
Syn8 pro-F TCCTGCAGCCCGGGGGATCCTGAAAGCTCGTACTTCTGTCGC
Syn8 pro-R AATTCTTCACCTTTAGACATACCGTGTGTGCTTACGCATCTA
Syn8-F GGATCCCCGGGTTAATTAACATGGATGTGTTGAAGCTGGGTT
Syn8-R ATACAGTTTTTTGCGGCCGCTTATAATACTAATAGAAGCAACAGG
Ykt6 pro-F TCCTGCAGCCCGGGGGATCCTTCTTCTTCTCCATTATTATCTTCA
Ykt6 pro-R AATTCTTCACCTTTAGACATTGCCAAAATAACTTCTCTAGTGAT
Ykt6-F GGATCCCCGGGTTAATTAACATGAGAATCTACTACATCGGTG
Ykt6-R ATACAGTTTTTTGCGGCCGCCTACATGATGATGCAACACGAAT
Sso1 pro-F TCCTGCAGCCCGGGGGATCCTACCGAAGAAAGAATACGACGAT
Sso1 pro-R AATTCTTCACCTTTAGACATTTGATTTGTTTCTATTTTTAATTGCC
Sso1-F GGATCCCCGGGTTAATTAACATGAGTTATAATAATCCGTACCAG
Sso1-R ATACAGTTTTTTGCGGCCGCTTAACGCGTTTTGACAACGGCT
Sso2 pro-F TCCTGCAGCCCGGGGGATCCTATAAATATAATAATATTATTGATTAATTA
Sso2 pro-R AATTCTTCACCTTTAGACATTGCTGCAATATTTGTGCGTGTAT
Sso2-F GGATCCCCGGGTTAATTAACATGAGCAACGCTAATCCTTATGA
Sso2-R ATACAGTTTTTTGCGGCCGCTTACTTTCTTGTTTCCACAACGG
Sec9 pro-F TCCTGCAGCCCGGGGGATCCTCTCTCTCTCTCTCTACTTAACA
Sec9 pro-R AATTCTTCACCTTTAGACATTCTTTTGGTGTCAATGGTGTATTA
Sec9-F GGATCCCCGGGTTAATTAACATGGGATTAAAGAAATTTTTTAAGAT
Sec9-R ATACAGTTTTTTGCGGCCGCCTATCTGATACCTGCCAACCTG
Spo20 pro-F TCCTGCAGCCCGGGGGATCCAAAAAGCCGTTTGCGGAAAGCA
Spo20 pro-R AATTCTTCACCTTTAGACATTATATATCTAAAAATGGCTATTCACA
Spo20-F GGATCCCCGGGTTAATTAACATGGGGTTCAGAAAAATACTTGCTA
Spo20-R ATACAGTTTTTTGCGGCCGCTCACCATCTTTTCCCGATCACT
BS-Ura-F CCTTTTTTGCGAGGCATATTTATG
BS-Ura-R GTAACTATTGAATTTTGTTTGGATTT
GFP-F ATGTCTAAAGGTGAAGAATTATTCA
GFP-Fa6a-R GTTAATTAACCCGGGGATCCGTCGACCTGCAGCGTACGAAGCTTTGTACAATTCATCCATACCATG
Stu1-F CCAATTGAGGCCTTTTTTGCGAGGCATATTTAT
Stu1-R AAAAAGGCCTCAATTGGCGCAGTAGCCTCA
Snab1-F TAGTTACGTAGACGTCCTACGATTCCGCGG
Snab1-R GGACGTCTACGTAACTATTGAATTTTGTTTGGATT
Table 1 DNA sequences of PCR primers
Plasmid Restriction sites or PCR primers
BS-Ura3-SEC20pro-GFP-Sec20 BS-Ura-F/BS-Ura-R
BS-Ura3-SEC22pro-GFP-Sec22 Stu I & PflF I
BS-Ura3-USE1pro-GFP-Use1 Stu I & PflF I
BS-Ura3-UFE1pro-GFP-Ufe1 BS-Ura-F/BS-Ura-R
BS-Ura3-SSO2pro-GFP-Ufe1 BS-Ura-F/BS-Ura-R
BS-Ura3-SED5pro-GFP-Sed5 Stu I & SnaB I
BS-Ura3-GOS1pro-GFP-Gos1 Stu I & SnaB I
BS-Ura3-BOS1pro-GFP-Bos1 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Bos1 Stu I & SnaB I
BS-Ura3-SFT1pro-GFP-Sft1 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Sft1 Stu I & SnaB I
BS-Ura3-TLG1pro-GFP-Tlg1 Stu I & SnaB I
BS-Ura3-TLG2pro-GFP-Tlg2 Stu I & SnaB I
BS-Ura3-SNC1pro-GFP-Snc1 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Snc1 Stu I & SnaB I
BS-Ura3-SNC2pro-GFP-Snc2 Stu I & SnaB I
BS-Ura3-BET1pro-GFP-Bet1 Stu I & PflF I
BS-Ura3-BET1pro-2GFP-Bet1 Stu I & PflF I
BS-Ura3-VAM3pro-GFP-Vam3 Stu I & SnaB I
BS-Ura3-VAM7pro-GFP-Vam7 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Vam7 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Nyv1 Stu I & SnaB I
BS-Ura3-VTI1pro-GFP-Vti1 Stu I & PflF I
BS-Ura3-PEP12pro-GFP-Pep12 BS-Ura-F/BS-Ura-R
BS-Ura3-SYN8pro-GFP-Syn8 Stu I & SnaB I
BS-Ura3-YKT6pro-GFP-Ykt6 Stu I & PflF I
BS-Ura3-SSO1pro-GFP-Sso1 Stu I & SnaB I
BS-Ura3-SSO2pro-GFP-Sso2 Stu I & PflF I
BS-Ura3-SEC9pro-GFP-Sec9 Stu I & SnaB I
BS-Ura3-SPO20pro-GFP-Spo20 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Spo20 Stu I & SnaB I
Table 2 Plasmids and restriction sites or PCR primers used to generate linear fragments for yeast transformation
Fig.1 A diagram of the GFP-SNARE series construction Fragments containing the SNARE gene promoter (SNAREpro), GFP ORF and SNARE protein ORF were amplified by the polymerase chain reaction (PCR). These fragments were inserted into the BS-Ura3Kl vector
Fig.2 SNAREs present on intracellular puncta Yeast cells were collected at mid-log phase and captured by fluorescence microscopy on Con A coated cover glass. Z-stacks containing 15 slices at 0.5μm step size were captured. Slice: A single representative slice; Z Projection: Maximal intensity projection of Z-stacks; DIC: Differential interference contrast
Fig.3 SNAREs present on larger organelles Images were captured and presented as in Fig. 1
Fig.4 SNAREs present on plasma membrane Images were captured and presented as in Fig. 1
Fig.5 SNAREs present on ER or in nucleus Images were captured and presented as in Fig.1, with the addition of a merge channel between green SNAREs and red organelle markers; mCherry-HDEL: ER marker; Nop56-DuDre:Nucleolus marker
Fig.6 SNAREs present on early Golgi Images were captured and presented as in Fig.5. Anp1-mCherry:Early Golgi marker; Sec7-DuDre:Late Golgi/early endosome marker; Snf7-mCherry:Late endosome marker
Fig.7 SNAREs present on late Golgi/early endosome Images were captured and presented as in Fig.5
Fig.8 SNAREs present on vacuole or late endosome Images were captured and presented as in Fig.5. Vph1-mCherry:Vacuole marker
SNARE Subcellular localization
Spo20 Nucleus
Sec20 ER
Sec22 ER
Use1 ER
Ufe1 ER
Sed5 Early Golgi
Gos1 Early Golgi
Bos11) Early Golgi
Sft1 Early Golgi、late Golgi/early endosome
Snc12) Late Golgi/early endosome
Snc2 Late Golgi/early endosome
Tlg1 Late Golgi/early endosome
Tlg2 Late Golgi/early endosome
Bet13) Late Golgi/early endosome
Syn8 Late endosome
Pep12 Late endosome
Vam3 Vacuole、late endosome
Vam7 Vacuole、late endosome
Vti1 Vacuole、late endosome
Nyv1 Vacuole
Sso1 Plasma membrane
Sso2 Plasma membrane
Sec94) Bud tip、septum
Ykt6 Cytoplasm
Table 3 Subcellular localization of SNARE proteins in Saccharomyces cerevisiae
[1]   Bonifacino J S, Glick B S . The mechanisms of vesicle budding and fusion. Cell, 2004,116(2):153-166.
[2]   S?llner T, Whiteheart S W, Brunner M , et al. SNAP receptors implicated in vesicle targeting and fusion. Nature, 1993,362(6418):318-324.
[3]   Weber T, Zemelman B V, Mcnew J A , et al. SNAREpins: minimal machinery for membrane fusion. Cell, 1998,92(6):759-772.
[4]   Fasshauer D, Sutton R B, Jahn B R . Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(26):15781-15786.
[5]   Burri L, Lithgow T . A complete set of SNAREs in yeast. Traffic, 2004,5(1):45-52.
[6]   Hardwick K G ,Pelham H R B. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. The Journal of Cell Biology, 1992,119(3):513-521.
[7]   Tsui M M K, Tai W C S, Banfield D K . Selective formation of Sed5p-containing SNARE complexes is mediated by combinatorial binding interactions. Molecular Biology of the Cell, 2001,12(3):521-538.
[8]   Mcnew J A ,Coe J G S,S?gaard M, et al. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Letters, 1998,435(1):89-95.
[9]   Shim J, Newman A P, Ferronovick S . The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. Journal of Cell Biology, 1991,113(1):55-64.
[10]   Banfield D K, Lewis M J ,Pelham H R B. A SNARE-like protein required for traffic through the Golgi complex. Nature, 1995,375(6534):806-809.
[11]   Newman A P, Groesch M E, Ferronovick S . Bos1p, a membrane protein required for ER to Golgi transport in yeast, co-purifies with the carrier vesicles and with Bet1p and the ER membrane. EMBO Journal, 1992,11(10):3609-3617.
[12]   Protopopov V, Govindan B, Novick P , et al. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell, 1993,74(5):855-861.
[13]   Lewis M J, Nichols B J, Prescianotto-Baschong C , et al. Specific retrieval of the exocytic SNARE snc1p from early yeast endosomes. Molecular Biology of the Cell, 2000,11(1):23-38.
[14]   Tani M, Kuge O . Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae. Molecular Microbiology, 2012,86(5):1262-1280.
doi: 10.1111/mmi.12057
[15]   Robinson M, Poon P P, Schindler C , et al. The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast. Molecular Biology of the Cell, 2006,17(4):1845-1858.
[16]   Holthuis J C M . Two syntaxin homologues in the TGN/endosomal system of yeast. EMBO Journal, 1998,17(1):113-126.
[17]   Abeliovich H . Tlg2p, a yeast syntaxin homolog that resides on the Golgi and endocytic structures. Journal of Biological Chemistry, 1998,273(19):11719-11727.
[18]   Lewis M J , Pelham H R B.A new yeast endosomal SNARE related to mammalian syntaxin 8. Traffic, 2003,3(12):922-929.
[19]   Gerrard S R . Pep12p is a multifunctional yeast syntaxin that controls entry of biosynthetic, endocytic and retrograde traffic into the prevacuolar compartment. Traffic, 2000,1(3):259-269.
[20]   Anwar K, Klemm R W, Condon A , et al. The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae. The Journal of Cell Biology, 2012,197(2):209-217.
[21]   Dilcher M . Use1p is a yeast SNARE protein required for retrograde traffic to the ER. EMBO Journal, 2003,22(14):3664-3674.
[22]   Lewis M J, Rayner J C, Pelham H R . A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum. EMBO Journal, 2014,16(11):3017-3024.
[23]   Patel S K, Indig F E, Olivieri N , et al. Organelle membrane fusion: a novel function for the syntaxin homolog Ufe1p in ER membrane fusion. Cell, 1998,92(5):611-620.
[24]   Newman A P, Shim J, Ferronovick S . BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Molecular & Cellular Biology, 1990,10(7):3405.
[25]   Ungermann C . Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. The Journal of Cell Biology, 1999,145(7):1435-1442.
[26]   Cheever M L, Sato T K, Beer T D , et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biology, 2001,3(7):613.
[27]   Sato T K, Darsow T, Emr S D . Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Molecular and Cellular Biology, 1998,18(9):5308-5319.
[28]   Kweon Y, Rothe A, Conibear E , et al. Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. Molecular Biology of the Cell, 2003,14(5):1868-1881.
[29]   Neiman A M . Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. The Journal of Cell Biology, 1998,140(1):29-37.
[30]   Aalto M K, Ronne H, Ker?nen S . Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO Journal, 1993,12(11):4095-4104.
[31]   Brennwald P, Kearns B, Champion K , et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell, 1994,79(2):245-258.
[32]   Couve A, Gerst J E . Yeast Snc proteins complex with Sec9. Functional interactions between putative SNARE proteins. Journal of Biological Chemistry, 1994,269(38):23391-23394.
[33]   Day K J, Casler J C, Glick B S . Budding yeast has a minimal endomembrane system. Developmental Cell, 2018,44(1):56-72.
[34]   Ossipov D, Schroderkohne S , Schmitt H D. Yeast ER-Golgi v-SNAREs Bos1p and Bet1p differ in steady-state localization and targeting. Journal of Cell Science, 1999,112 (Pt 22)(22):4135-4142.
[35]   Beilharz T . Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003,278(10):8219-8223.
[36]   Meiringer C T A, Auffarth K, Hou H , et al. Depalmitoylation of Ykt6 prevents its entry into the multivesicular body pathway. Traffic, 2008,9(9):1510-1521.
[37]   Weber-Boyvat M, Chernov K G, Aro N , et al. The Sec1/Munc18 protein groove plays a conserved role in interaction with Sec9p/SNAP-25. Traffic, 2016,17(2):131-153.
[1] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[2] JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(11): 39-53.
[3] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[4] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[5] Xin-tong CHI,Shao-ming MAO. Optimization of Bioethanol Production by Brown Algae[J]. China Biotechnology, 2017, 37(12): 111-118.
[6] WAN Yong-qing, YANG Yang, ZHANG Chun-lin, WAN Dong-li, YANG Ai-qin, YANG Qi, WANG Rui-gang, LI Guo-jing. Cloning and Expression Analysis of CiDHN1 Gene in Caragana intermedia[J]. China Biotechnology, 2016, 36(4): 88-96.
[7] WAN Yong-qing, LI Rui-li, ZOU Bo, WAN Dong-li, WANG Rui-gang, LI Guo-jing. Subcellular Localization and Functional Studying of SCBP60g in Arabidopsis[J]. China Biotechnology, 2013, 33(9): 31-37.
[8] . Molecular Cloning and Characterization of mBolA1, a Novel Mouse Secreted Protein[J]. China Biotechnology, 2006, 26(02): 0-0.