Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (10): 106-114    DOI: 10.13523/j.cb.20161015
    
Advances in Research on Small Non-coding RNAs of Gram-positive Bacteria
ZHANG Jian, WU Hao, LI Yan-ni, QIAO Jian-jun
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University; Key Laboratory of Systems Bioengineering, Ministry of Education;SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(652KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacterial small non-coding RNAs (sRNAs), an emerging class of regulatory RNAs, interact with their mRNA targets by base-pairing to inhibit or activate their translation, regulate expression of protein, and possess various biological functions. Recently, with the development of RNA-seq, bioinformatics and experimental techniques, hundreds of sRNAs have been explored in bacteria. As regulator factors at the posttranscriptional level, sRNAs have received extensive attention due to their important roles in biological processes. The sRNAs in gram-positive bacteria are focused on. The researches on screening, identification and functions of sRNA are summarized and the inherent relation between sRNAs and virulence factors, quorum sensing, iron metabolism as well as two-component system is elucidated and analyzed, whilst future study trends were proposed.



Key wordsGram-positive bacteria      Regulator factors      Small non-coding RNAs     
Received: 21 March 2016      Published: 25 October 2016
ZTFLH:  Q752  
Cite this article:

ZHANG Jian, WU Hao, LI Yan-ni, QIAO Jian-jun. Advances in Research on Small Non-coding RNAs of Gram-positive Bacteria. China Biotechnology, 2016, 36(10): 106-114.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161015     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I10/106

[1] Hershberg R, Altuvia S, Margalit H. A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Research, 2003, 31(7): 1813-1820.
[2] Wassarman K M. Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell, 2002, 109(2): 141-144.
[3] Livny J, Waldor M K. Identification of small RNAs in diverse bacterial species. Current Opinion in Microbiology, 2007, 10(2): 96-101.
[4] Storz G. An expanding universe of noncoding RNAs. Science, 2002, 296(5571): 1260-1263.
[5] Hindley J T. Fractionation of 32 P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. Journal of Molecular Biology, 1967, 30(1): 125-136.
[6] Andersen J, Delihas N, Ikenaka K, et al. The isolation and characterization of RNA coded by the micF gene in Escherichia coli. Nucleic Acids Research, 1987, 15(5): 2089-2101.
[7] Andersen J, Forst S, Zhao K, et al. The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. Journal of Biological Chemistry, 1989, 264(30): 17961-17970.
[8] Delihas N, Forst S. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. Journal of Molecular Biology, 2001, 313(1): 1-12.
[9] Kang Z, Zhang C, Zhang J, et al. Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology, 2014, 98(8): 3413-3424.
[10] Rasmussen S, Nielsen H B, Jarmer H. The transcriptionally active regions in the genome of Bacillus subtilis. Molecular Microbiology, 2009, 73(6): 1043-1057.
[11] Wurtzel O, Sesto N, Mellin J R, et al. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Molecular Systems Biology, 2012, 8(1): 583.
[12] Acebo P, Martin-Galiano A J, Navarro S, et al. Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae. RNA, 2012, 18(3): 530-546.
[13] Perez N, Treviño J, Liu Z, et al. A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus. PloS One, 2009, 4(11): e7668.
[14] Abu-Qatouseh L F, Chinni S V, Seggewiβ J, et al. Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. Journal of Molecular Medicine, 2010, 88(6): 565-575.
[15] Waters L S, Storz G. Regulatory RNAs in bacteria. Cell, 2009, 136(4): 615-628.
[16] Kawano M, Reynolds A A, Miranda-Rios J, et al. Detection of 5'-and 3'-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Research, 2005, 33(3): 1040-1050.
[17] Li W, Ying X, Lu Q, et al. Predicting sRNAs and their targets in bacteria. Genomics, Proteomics & Bioinformatics, 2012, 10(5): 276-284.
[18] Brantl S. Bacterial chromosome-encoded small regulatory RNAs. Future Microbiology, 2009, 4(1): 85-103.
[19] Miller E W, Cao T N, Pflughoeft K J, et al. RNA-mediated regulation in Gram-positive pathogens: an overview punctuated with examples from the group A Streptococcus. Molecular Microbiology, 2014, 94(1): 9-20.
[20] Chevalier C, Boisset S, Romilly C, et al. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog, 2010, 6(3): e1000809.
[21] Sievers S, Lillebæk E M, Jacobsen K, et al. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB. Nucleic Acids Research, 2014, 42(14): 9383-9398.
[22] Cho K H, Kim J H. Cis-encoded non-coding antisense RNAs in Streptococci and other low GC Gram (+) bacterial pathogens. Frontiers in Genetics, 2015, 6: 110.
[23] Mellin J, Cossart P. Unexpected versatility in bacterial riboswitches. Trends in Genetics, 2015, 31(3): 150-156.
[24] DebRoy S, Gebbie M, Ramesh A, et al. A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science, 2014, 345(6199): 937-940.
[25] Boisset S, Geissmann T, Huntzinger E, et al. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes & Development, 2007, 21(11): 1353-1366.
[26] Chunhua M, Yu L, Yaping G, et al. The expression of LytM is down-regulated by RNAIII in Staphylococcus aureus. Journal of Basic Microbiology, 2012, 52(6): 636-641.
[27] Huntzinger E, Boisset S, Saveanu C, et al. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. The EMBO Journal, 2005, 24(4): 824-835.
[28] Morfeldt E, Taylor D, Von Gabain A, et al. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. The EMBO Journal, 1995, 14(18): 4569.
[29] Liu Y, Mu C, Ying X, et al. RNAIII activates map expression by forming an RNA-RNA complex in Staphylococcus aureus. FEBS Letters, 2011, 585(6): 899-905.
[30] Zheng H, Liu E, Shi T, et al. Strand-specific RNA-seq analysis of the Lactobacillus delbrueckii subsp. bulgaricus transcriptome. Molecular BioSystems, 2016, 12(2): 508-519.
[31] Brantl S, Brückner R. Small regulatory RNAs from low-GC Gram-positive bacteria. RNA Biology, 2014, 11(5): 443-456.
[32] Mraheil M A, Billion A, Kuenne C, et al. Comparative genome-wide analysis of small RNAs of major Gram-positive pathogens: from identification to application. Microbial Biotechnology, 2010, 3(6): 658-676.
[33] Forsyth R, Haselbeck R J, Ohlsen K L, et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Molecular Microbiology, 2002, 43(6): 1387-1400.
[34] Pichon C, Felden B. Small RNA gene identification and mRNA target predictions in bacteria. Bioinformatics, 2008, 24(24): 2807-2813.
[35] Silvaggi J M, Perkins J B, Losick R. Genes for small, noncoding RNAs under sporulation control in Bacillus subtilis. Journal of Bacteriology, 2006, 188(2): 532-541.
[36] Livny J, Brencic A, Lory S, et al. Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Research, 2006, 34(12): 3484-3493.
[37] Livny J, Teonadi H, Livny M, et al. High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PloS One, 2008, 3(9): e3197.
[38] Pichon C, Felden B. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(40): 14249-14254.
[39] Vogel J, Wagner E G. Target identification of small noncoding RNAs in bacteria. Current Opinion in Microbiology, 2007, 10(3): 262-270.
[40] Eggenhofer F, Tafer H, Stadler P F, et al. RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Research, 2011, 39(suppl 2): W149-W154.
[41] Cao Y, Wu J, Liu Q, et al. sRNATarBase: a comprehensive database of bacterial sRNA targets verified by experiments. RNA, 2010, 16(11): 2051-2057.
[42] Cao Y, Zhao Y, Cha L, et al. sRNATarget: a web server for prediction of bacterial sRNA targets. Bioinformation, 2009, 3(8): 364-366.
[43] Busch A, Richter A S, Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics, 2008, 24(24): 2849-2856.
[44] Tjaden B. TargetRNA: a tool for predicting targets of small RNA action in bacteria. Nucleic Acids Research, 2008, 36(suppl 2): W109-W113.
[45] Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Research, 2006, 34(suppl 2): W451-W454.
[46] Zhang Y, Sun S, Wu T, et al. Identifying Hfq-binding small RNA targets in Escherichia coli. Biochemical and Biophysical Research Communications, 2006, 343(3): 950-955.
[47] Tjaden B, Goodwin S S, Opdyke J A, et al. Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Research, 2006, 34(9): 2791-2802.
[48] Abu-Qatouseh L F, Chinni S V, Seggewiss J, et al. Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. Journal of molecular medicine (Berlin, Germany), 2010, 88(6): 565-575.
[49] Tjaden B, Saxena R M, Stolyar S, et al. Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Research, 2002, 30(17): 3732-3738.
[50] Dambach M, Irnov I, Winkler W C. Association of RNAs with Bacillus subtilis Hfq. PLoS One, 2013, 8(2): e55156.
[51] Irnov I, Sharma C M, Vogel J, et al. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Research, 2010,38(19): 6637-6651.
[52] Wanner B, Wieder S, McSharry R. Use of bacteriophage transposon Mu d1 to determine the orientation for three proC-linked phosphate-starvation-inducible (psi) genes in Escherichia coli K-12. Journal of Bacteriology, 1981, 146(1): 93-101.
[53] Urban J H, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Research, 2007, 35(3): 1018-1037.
[54] Ramachandran R, Stevens A M. Proteomic analysis of the quorum-sensing regulon in Pantoea stewartii and identification of direct targets of EsaR. Applied and Environmental Microbiology, 2013, 79(20): 6244-6252.
[55] Quigley B R, Zähner D, Hatkoff M, et al. Linkage of T3 and Cpa pilins in the Streptococcus pyogenes M3 pilus. Molecular Microbiology, 2009, 72(6): 1379-1394.
[56] Loh E, Dussurget O, Gripenland J, et al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell, 2009, 139(4): 770-779.
[57] Oliva G, Sahr T, Buchrieser C. Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiology Reviews, 2015, 39(3): 331-349.
[58] Xue T, Zhang X, Sun H, et al. ArtR, a novel sRNA of Staphylococcus aureus, regulates alpha-toxin expression by targeting the 5' UTR of sarT mRNA. Medical Microbiology and Immunology, 2014, 203(1): 1-12.
[59] Geisinger E, Adhikari R P, Jin R, et al. Inhibition of rot translation by RNAIII, a key feature of agr function. Molecular Microbiology, 2006, 61(4): 1038-1048.
[60] Ohtani K, Bhowmik S K, Hayashi H, et al. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens. FEMS Microbiology Letters, 2002, 209(1): 113-118.
[61] Queck S Y, Jameson-Lee M, Villaruz A E, et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Molecular Cell, 2008, 32(1): 150-158.
[62] Ikuo M, Nagano G, Saito Y, et al. Inhibition of exotoxin production by mobile genetic element SCCmec-encoded psm-mec RNA is conserved in staphylococcal species. PLoS One, 2014, 9(6): e100260.
[63] Kaito C, Saito Y, Ikuo M, et al. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLoS Pathogens, 2013, 9(4): e1003269.
[64] Semsey S, Andersson A M, Krishna S, et al. Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic Acids Research, 2006, 34(17): 4960-4967.
[65] Gaballa A, Antelmann H, Aguilar C, et al. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proceedings of the National Academy of Sciences, 2008, 105(33): 11927-11932.
[66] Smaldone G T, Revelles O, Gaballa A, et al. A global investigation of the Bacillus subtilis iron-sparing response identifies major changes in metabolism. J Bacteriol, 2012, 194(10): 2594-2605.
[67] Smaldone G T, Antelmann H, Gaballa A, et al. The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the Bacillus subtilis lutABC iron-sulfur-containing oxidases. Journal of Bacteriology, 2012, 194(10): 2586-2593.
[68] Oglesby-Sherrouse A G, Murphy E R. Iron-responsive bacterial small RNAs: variations on a theme. Metallomics: Integrated Biometal Science, 2013, 5(4): 276-286.
[69] Cotter P D, Emerson N, Gahan C G, et al. Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. Journal of Bacteriology, 1999, 181(21): 6840-6843.
[70] Roberts S A, Scott J R. RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon. Molecular Microbiology, 2007, 66(6): 1506-1522.
[71] Ohtani K, Hirakawa H, Tashiro K, et al. Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe, 2010, 16(3): 258-264.
[72] Obana N, Nakamura K. A novel toxin regulator, the CPE1446-CPE1447 protein heteromeric complex, controls toxin genes in Clostridium perfringens. Journal of Bacteriology, 2011, 193(17): 4417-4424.
[73] Marx P, Nuhn M, Kovács M, et al. Identification of genes for small non-coding RNAs that belong to the regulon of the two-component regulatory system CiaRH in Streptococcus. BMC Genomics, 2010, 11(1): 661.
[74] Valentin-Hansen P, Eriksen M, Udesen C. MicroReview: The bacterial Sm-like protein Hfq: a key player in RNA transactions. Molecular Microbiology, 2004, 51(6): 1525-1533.
[75] Vogel J, Luisi B F. Hfq and its constellation of RNA. Nature Reviews Microbiology, 2011, 9(8): 578-589.
[76] Faner M, Feig A. Identifying and characterizing Hfq-RNA interactions. Methods, 2013, 63(2): 144-159.
[77] Christiansen J K, Nielsen J S, Ebersbach T, et al. Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA, 2006, 12(7): 1383-1396.
[78] Nielsen J S, Lei L K, Ebersbach T, et al. Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes. Nucleic Acids Research, 2009: 38(3) :907-919.
[79] Nielsen J S, Larsen M H, Lillebaek E M, et al. A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes. PLoS One, 2011, 6(4): e19019.
[80] Bohn C, Rigoulay C, Bouloc P. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus Aureus. BMC Microbiology, 2007, 7(1): 10.
[81] Rochat T, Bouloc P, Yang Q, et al. Lack of interchangeability of Hfq-like proteins. Biochimie, 2012, 94(7): 1554-1559.

[1] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[2] Xiao-fang WU,Jia-heng LIU,Hui XIONG,Jian-jun QIAO,Hong-ji ZHU. Research Progress of Lipoprotein in Gram-positive Bacteria[J]. China Biotechnology, 2018, 38(6): 86-94.