Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (7): 76-80    DOI: 10.13523/j.cb.20140712
    
TALEN:A New Genome Site-specific Editing Technology
ZHANG Qiao-Juan1, ZHANG Yan-Qiong1, LIU Chang-Bai1,2
1. Medical School China Three Gorges University, Yichang 443002, China;
2. Institute of Molecule Biology, China Three Gorges University, Yichang 443002, China
Download: HTML   PDF(511KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Transcription activator-like effectors nucleases (TALENs) has been a novel landmark genetic engineering tool for targeted genome site-specific editing in recent years, which consists of sequence-specific DNA-binding domain TALE and non-specific DNA cleavage domain FokI endonuclease. TALEs recognize and bind to specific DNA sequences and FokI generate a double-strand break (DSB) by its nuclease activity, and then DNA damage repair system induced. TALENs are constructed to mediate high efficient multiple genetic manipulation, through forming DSB, including target genes specific sites of gene segment knock-in, knock-out or correction, etc. TALEN technology with its simple design, high specificity, low toxicity and target selection flexible becomes the most widely used genome site-specific editing technology. Here, we will review the recent progress, clinical application and prospects of TALEN technology.



Key wordsTALEN      Site-specific genome editing      Clinical application     
Received: 03 June 2014      Published: 25 July 2014
ZTFLH:  Q784  
Cite this article:

ZHANG Qiao-Juan, ZHANG Yan-Qiong, LIU Chang-Bai. TALEN:A New Genome Site-specific Editing Technology. China Biotechnology, 2014, 34(7): 76-80.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140712     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I7/76


[1] Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res, 2006, 34(22): e149-e149.

[2] Menoret S, Fontaniere S, Jantz D, et al. Generation of Ragl-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J, 2013, 27( 2) :703-711.

[3] Kim Y G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996, 93(3): 1156-1160

[4] Break through of the year. The runners-up. Science, 2012, 338(6114): 1525-1532

[5] Mussolino C, Cathomen T. RNA guides genome engineering. Nat Biotechnol, 2013, 31(3): 208-209

[6] Hopkins C M, White F F, Choi S H, et al. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact, 1992, 5(6): 451-459.

[7] Bonas U, Stall R E, Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet, 1989, 218(1): 127-136.

[8] Kay S, Hahn S, Marois E, et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 2007, 318(5850): 648-651.

[9] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509-1512.

[10] Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501-1501.

[11] Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 2012, 335(6069): 720-723.

[12] Mak A N S, Bradley P, Cernadas R A, et al. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 2012, 335(6069): 716-719.

[13] Chen K, Gao C. TALENs: Customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics, 2013, 40(6): 271-279.

[14] McMahon M A, Rahdar M, Porteus M. Gene editing: not just for translation anymore. Nat Methods, 2011, 9(1):28-31.

[15] Cermak T, Doyle E L, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39(12): e82-e82.

[16] Grau J, Boch J, Posch S. TALENoffer: genome-wide TALEN off-target prediction. Bioinformatics, 2013, 29(22): 2931-2932.

[17] Mahfouz M M, Li L, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA, 2011, 108(6): 2623-2628.

[18] 沈延,肖安,黄鹏,等.类转录激活因子效应物核酸酶 (TALEN) 介导的基因组定点修饰技术. 遗传, 2013, 35(4): 395-409. Shen Y, Xiao A, Huang P, et al. TALE nuclease engineering and targeted genome modification. HEREDITAS (Beijing), 2013, 35(4):395-409.

[19] Liu J, Gaj T, Patterson J T, et al. Cell-Penetrating Peptide-Mediated Delivery of TALEN Proteins via Bioconjugation for Genome Engineering. PloS one, 2014, 9(1): e85755.

[20] Jia J, Jin Y, Bian T, et al. Bacterial Delivery of TALEN Proteins for Human Genome Editing. PloS one, 2014, 9(3): e91547.

[21] Bichsel C, Neeld D K, Hamazaki T, et al. Bacterial delivery of nuclear proteins into pluripotent and differentiated cells. PloS one, 2011, 6(1): e16465.

[22] Bichsel C, Neeld D, Hamazaki T, et al. Direct Reprogramming of Fibroblasts to Myocytes via Bacterial Injection of MyoD Protein. Cell Reprogram, 2013, 15(2): 117-125.

[23] Sander J D, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat biotechnol, 2011, 29(8): 697-698.

[24] Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat biotechnol, 2011, 29(8): 731-734.

[25] Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs. Nat biotechnol, 2011, 29(8): 695-696.

[26] Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat biotechnol, 2009, 27(9): 851-857.

[27] Piganeau M, Ghezraoui H, De Cian A, et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res, 2013, 23(7): 1182-1193.

[28] Sun N, Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol Bioeng, 2014, 111(5): 1048-1053.

[29] Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, et al. TALEN-mediated gene correction in integration-free beta-thalassemia iPSCs. J Biol Chem, 2013, 288(48): 34671-34679.

[30] Seth A, Stemple D L, Barroso I. The emerging use of zebrafish to model metabolic disease. Dis Model Mech, 2013, 6(5): 1080-1088.

[31] Osborn M J, Starker C G, McElroy A N, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther, 2013, 21(6): 1151-1159.

[32] Hu R, Wallace J, Dahlem T J, et al. Targeting human microRNA genes using engineered Tal-effector nucleases (TALENs). PloS one, 2013, 8(5): e63074.

[33] Bacman S R, Williams S L, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat med, 2013, 19(9): 1111-1113.

[34] Manjunath N, Yi G, Dang Y, et al. Newer Gene Editing Technologies toward HIV Gene Therapy. Viruses, 2013, 5(11): 2748-2766.

[35] Moghaddassi S, Eyestone W, Bishop C E. TALEN-mediated modification of the bovine genome for Large-Scale production of Human serum albumin. PloS one, 2014, 9(2): e89631.

[1] YANG Chun-yan,WANG Lei,MU Deng-cai,LI Fang-fang,SHEN Hao,ZHENG Shang-yong. Advances of Gene Editing in Disease Treatment[J]. China Biotechnology, 2019, 39(11): 87-95.
[2] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[3] LIU Yi-jie, XUE Yong-chang. The Research Progress of Flavonoids in Plants[J]. China Biotechnology, 2016, 36(9): 81-86.
[4] WANG Dian-liang, DU Juan. The Current Research and Development Status of Cell Drug[J]. China Biotechnology, 2016, 36(9): 126-133.
[5] WANG Dian-liang. The Clinical Application of Cell Drug[J]. China Biotechnology, 2016, 36(12): 117-123.
[6] TANG Wen-yan, LUAN Zuo. Biological Characteristics and Clinical Application of Endothelial Progenitor Cells[J]. China Biotechnology, 2016, 36(10): 86-93.
[7] YANG Fa-yu, GE Xiang-lian, GU Feng. Progress of Next-generation Targeted Gene-editing Techniques[J]. China Biotechnology, 2014, 34(2): 98-103.
[8] WANG Dian-liang. Clinical Researches of Tissue Engineering[J]. China Biotechnology, 2014, 34(10): 114-120.