Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (5): 105-113    DOI: 10.13523/j.cb.20190512
综述     
CD133(Prominin-1)的结构、功能及其相关抗体的研究进展 *
程雨涵,龚熹,罗玉萍()
南昌大学生命科学学院 南昌 330031
Advances in Studies on the Structure, Function and Related Antibodies of CD133 (Prominin-1)
Yu-han CHENG,Xi GONG,Yu-ping LUO()
School of Life Sciences, Nanchang University, Nanchang 330031, China
 全文: PDF(634 KB)   HTML
摘要:

CD133(Prominin-1)是五次跨膜糖蛋白Prominin家族的成员之一,最初作为特异性标志物用于筛选人造血干细胞和祖细胞,随后用于分离鉴定各种肿瘤干细胞的特定细胞亚群。研究表明,CD133是肿瘤治疗预后的标志物,能与血管内皮生长因子等物质相互作用,参与细胞通路的信号转导,在维持视网膜形态和功能中发挥着重要作用。根据是否与CD133的糖基化表位结合,可将CD133的相关抗体分为糖基化抗体、非糖基化抗体以及其他未指明是否与糖基化表位结合的抗体。围绕CD133近年的研究成果对Prominin家族、CD133的功能、相关抗体和相关研究方法进行综述。

关键词: CD133Prominin-1信号通路视网膜抗体    
Abstract:

CD133(Prominin-1) is one of members which are the five-time transmembrane glycoprotein Prominin family. CD133 was originally used as a specific marker for the screening of human hematopoietic stem and progenitor cells, which was subsequently used to isolate and identify specific cell subsets of various cancer stem cells. Many studies have shown that CD133 is a prognostic marker for tumor therapy, interacts with substances such as vascular endothelial growth factor, participates in signal transduction in cell pathways, and plays an important role in maintaining retinal morphology and function. Depending on whether or not it binds to a glycosylation epitope of CD133, antibodies related to CD133 can be classified into glycosylated antibodies, non-glycosylated antibodies, and other antibodies that are not indicated to bind to a glycosylated epitope. The recent years’ research of CD133 was focused,the Prominin family, and the functions, related antibodies and related research methods of CD133 were reviewed.

Key words: CD133    Prominin-1    Signal pathway    Retina    Antibody
收稿日期: 2018-10-08 出版日期: 2019-06-04
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31660324);国家自然科学基金(31571405);江西省自然科学基金资助项目(20161BAB214160)
通讯作者: 罗玉萍     E-mail: luoyuping@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程雨涵
龚熹
罗玉萍

引用本文:

程雨涵,龚熹,罗玉萍. CD133(Prominin-1)的结构、功能及其相关抗体的研究进展 *[J]. 中国生物工程杂志, 2019, 39(5): 105-113.

Yu-han CHENG,Xi GONG,Yu-ping LUO. Advances in Studies on the Structure, Function and Related Antibodies of CD133 (Prominin-1). China Biotechnology, 2019, 39(5): 105-113.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190512        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I5/105

图1  跨膜糖蛋白CD133的示意图
视网膜疾病 突变位点 突变类型 特征 结果 参考文献
染色体隐性视网膜变性 exon 15
c.1726C>T
p. G576X
纯和无义突变 CD133蛋白被截断 视觉受损
视网膜色素变性
黄斑变性
脉络膜毛细血管萎缩
RPE萎缩
[21,40]
c.1878del G
p. G614EfsX12
纯和移码突变 翻译过早终止
常染色体显性黄斑
变性/营养不良
exon10
c.1117C>T
p. R373C
杂合错义突变 感光盘形态发生被破坏
外节段椎间盘膜
过度生长并错位
RPE萎缩
圆盘膜形态发生异常
进行性中央视觉丧失
[6,42-43]
c.1960C>G
p. L654V
光感受器形态被破坏
常染色体显性Stargardt
样黄斑营养不良
(STGD4-like MD)
c.734T>C
p. L245P
杂合错义突变 损害CD133蛋白稳定性、
灵活性和氨基酸
相互作用网络
中央视觉下降
黄斑萎缩
RPE萎缩
[7]
常染色体隐性视锥-
视杆营养不良
(CORD)
exon 12
c.1349insT
p. Y452fs12X
纯和移码突变 约1/3的CD133
蛋白质被截短
高度近视
视觉严重受损
不同程度的进行性视力
恶化、眩光、色觉异常
和夜视困难
[8,44]
c.2281-26_-17del 纯和内含子缺失 改变了内含子21的剪切
外显子22跳跃
常染色体隐性视
网膜色素变性
(arRP)
exon 8
c.869delG
纯和移码突变 过早引入终止密码子,
约2/3的CD133
蛋白质被截断
早发性黄斑萎缩
近视
[9]
磁盘形态发生和
光感受器退化
Loss of the
CD133 gene
基因缺失
Gene deletion
视力受损
视觉色素异常分布
感光细胞凋亡增加
外节形态受损
渐进性感光器变性
视力完全丧失
[23]
表1  CD133与视网膜疾病间的功能研究汇总
[1] Miraglia S, Godfrey W, Yin A H , et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood, 1997,90(12):5013-5021.
[2] Wuchter C, Ratei R, Spahn G , et al. Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. Haematologica, 2001,86(2):154-161.
[3] Mizrak D, Brittan M, Alison M . CD133: molecule of the moment. J Pathol, 2008,214(1):3-9.
doi: 10.1002/(ISSN)1096-9896
[4] Irollo E, Pirozzi G . CD133: to be or not to be, is this the real question. Am J Transl Res, 2013,5(6):563-581.
[5] Zhou Q, Chen A, Song H , et al. Prognostic value of cancer stem cell marker CD133 in ovarian cancer: a meta-analysis. Int J Clin Exp Med, 2015,8(3):3080-3088.
[6] Yang Z, Chen Y, Lillo C , et al. Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest, 2008,118(8):2908-2916.
[7] Imani S, Cheng J, Shasaltaneh M D , et al. Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy. Oncotarget, 2018,9(1):122-141.
[8] Pras E, Abu A, Rotenstreich Y , et al. Cone-rod dystrophy and a frameshift mutation in the PROM1 gene. Mol Vis, 2009,15:1709-1716.
[9] Permanyer J, Navarro R, Friedman J , et al. Autosomal recessive retinitis pigmentosa with early macular affectation caused by premature truncation in PROM1. Invest Ophthalmol Vis Sci, 2010,51(5):2656-2663.
doi: 10.1167/iovs.09-4857
[10] Jaszai J, Fargeas C A, Florek M , et al. Focus on molecules: prominin-1 (CD133). Exp Eye Res, 2007,85(5):585-586.
doi: 10.1016/j.exer.2006.03.022
[11] Fargeas C A, Florek M, Huttner W B , et al. Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem, 2003,278(10):8586-8596.
doi: 10.1074/jbc.M210640200
[12] Corbeil D, Roper K, Fargeas C A , et al. Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic, 2001,2(2):82-91.
doi: 10.1034/j.1600-0854.2001.020202.x
[13] Donovan L K, Pilkington G J . CD133: holy of grail of neuro-oncology or promiscuous red-herring. Cell Prolif, 2012,45(6):527-537.
doi: 10.1111/cpr.2012.45.issue-6
[14] Bidlingmaier S, Zhu X, Liu B . The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl), 2008,86(9):1025-1032.
doi: 10.1007/s00109-008-0357-8
[15] Fargeas C A, Fonseca A V, Huttner W B , et al. Prominin-1 (CD133): from progenitor cells to human diseases. Future Lipidology, 2006,1(2):213-225.
doi: 10.2217/17460875.1.2.213
[16] Shmelkov S V, St Clair R, Lyden D , et al. AC133/CD133/Prominin-1. Int J Biochem Cell Biol, 2005,37(4):715-719.
doi: 10.1016/j.biocel.2004.08.010
[17] Bauer N, Fonseca A V, Florek M , et al. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs, 2008,188(1-2):127-138.
doi: 10.1159/000112847
[18] Florek M, Bauer N, Janich P , et al. Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res, 2007,328(1):31-47.
doi: 10.1007/s00441-006-0324-z
[19] Florek M, Haase M, Marzesco A M , et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res, 2005,319(1):15-26.
doi: 10.1007/s00441-004-1018-z
[20] Walker T L, Wierick A, Sykes A M , et al. Prominin-1 allows prospective isolation of neural stem cells from the adult murine hippocampus. J Neurosci, 2013,33(7):3010-3024.
doi: 10.1523/JNEUROSCI.3363-12.2013
[21] Maw M A, Corbeil D, Koch J , et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet, 2000,9(1):27-34.
doi: 10.1093/hmg/9.1.27
[22] 邵志华, 李瑛泽, 许洁 , 等. Prominin1在C57BL/6小鼠视网膜色素上皮中的表达. 同济大学学报(医学版), 2018,39(1):23-28.
Shao Z H, Li Y Z, Xu J , et al. Expression of Prominin1 in retinal pigment epithelium of C57BL/6 mice at different development stages. Journal of Tongji University(Medical Science), 2018,39(1):23-28.
[23] Zacchigna S, Oh H, Wilsch-Brauninger M , et al. Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci, 2009,29(7):2297-2308.
doi: 10.1021/jp035547p pmid: 19228982
[24] Jaszai J, Fargeas C A, Graupner S , et al. Distinct and conserved prominin-1/CD133-positive retinal cell populations identified across species. PLoS One, 2011,6(3):e17590.
doi: 10.1371/journal.pone.0017590 pmid: 21407811
[25] Yin A H, Miraglia S, Zanjani E D , et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 1997,90(12):5002-5012.
[26] Zhu L, Gibson P, Currle D S , et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 2009,457(7229):603-607.
[27] Shankland S J, Pippin J W, Duffield J S . Progenitor cells and podocyte regeneration. Semin Nephrol, 2014,34(4):418-428.
doi: 10.1016/j.semnephrol.2014.06.008
[28] Cherciu I, Barbalan A, Pirici D , et al. Stem cells, colorectal cancer and cancer stem cell markers correlations. Curr Health Sci J, 2014,40(3):153-161.
[29] Wang J, Li F, Zhang G , et al. Two novel monoclonal antibodies against human CD133-2: distinct epitopes and agonist activity to enhance growth of CD133 expression cells in vitro. Hybridoma (Larchmt), 2010,29(3):241-249.
doi: 10.1089/hyb.2009.0113
[30] Xu W W, Li B, Zhao J F , et al. IGF2 induces CD133 expression in esophageal cancer cells to promote cancer stemness. Cancer Lett, 2018,425:88-100.
doi: 10.1016/j.canlet.2018.03.039
[31] Sato-Dahlman M, Miura Y, Huang J L , et al. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget, 2017,8(44):76044-76056.
[32] Adini A, Adini I, Ghosh K , et al. The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis, 2013,16(2):405-416.
doi: 10.1007/s10456-012-9323-8
[33] Kaushal G S, Rognoni E, Lichtenberger B M , et al. Fate of prominin-1 expressing dermal papilla cells during homeostasis, wound healing and Wnt activation. J Invest Dermatol, 2015,135(12):2926-2934.
doi: 10.1038/jid.2015.319
[34] Brossa A, Papadimitriou E, Collino F , et al. Role of CD133 molecule in Wnt response and renal repair, 2018,7(3):283-294.
[35] Roy L, Bobbs A, Sattler R , et al. CD133 promotes adhesion to the ovarian cancer metastatic niche. Cancer Growth Metastasis, 2018,11:1-11.
[36] Yuan F, Liu L, Lei Y , et al. MiRNA-142-3p increases radiosensitivity in human umbilical cord blood mononuclear cells by inhibiting the expression of CD133. Sci Rep, 2018,8(1):5674.
doi: 10.1038/s41598-018-23968-1
[37] Wei Y, Jiang Y, Zou F , et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA, 2013,110(17):6829-6834.
doi: 10.1073/pnas.1217002110 pmid: 23569237
[38] Shimozato O, Waraya M, Nakashima K , et al. Receptor-type protein tyrosine phosphatase kappa directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene, 2015,34(15):1949-1960.
[39] Liu C, Li Y, Xing Y , et al. The interaction between cancer stem cell marker CD133 and Src protein promotes focal adhesion kinase (FAK) phosphorylation and cell migration. J Biol Chem, 2016,291(30):15540-15550.
doi: 10.1074/jbc.M115.712976
[40] Zhang Q, Zulfiqar F, Xiao X , et al. Severe retinitis pigmentosa mapped to 4p15 and associated with a novel mutation in the PROM1 gene. Hum Genet, 2007,122(3-4):293-299.
doi: 10.1007/s00439-007-0395-2
[41] Bhattacharya S, Yin J, Winborn C S , et al. Prominin-1 Is a novel regulator of autophagy in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci, 2017,58(4):2366-2387.
doi: 10.1167/iovs.16-21162
[42] Kim J M, Lee C, Lee G I , et al. Identification of the PROM1 mutation p.R373C in a Korean patient with autosomal dominant Stargardt-like Macular Dystrophy. Ann Lab Med, 2017,37(6):536-539.
doi: 10.3343/alm.2017.37.6.536
[43] Randhawa S, Sharma M . A new macular dystrophy secondary to a nove mutation in the Prominin 1(PROM1) gene. Retin Cases Brief Rep, 2017,11(Suppl 1):S62-s64.
doi: 10.1097/ICB.0000000000000405
[44] Eidinger O, Leibu R, Newman H , et al. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy. Mol Vis, 2015,21:1295-1306.
[45] Karim B O, Rhee K J, Liu G , et al. Prom1 function in development, intestinal inflammation, and intestinal tumorigenesis. Front Oncol, 2014,4:323.
[46] Karbanova J, Laco J, Marzesco A M , et al. Human prominin-1 (CD133) is detected in both neoplastic and non-neoplastic salivary gland diseases and released into saliva in a ubiquitinated form. PLoS One, 2014,9(6):e98927.
doi: 10.1371/journal.pone.0098927
[47] Liu Y, Ren S, Xie L , et al. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Oncotarget, 2015,6(24):20650-20660.
[48] Wang D, Guo Y, Li Y , et al. Detection of CD133 expression in U87 glioblastoma cells using a novel anti-CD133 monoclonal antibody. Oncol Lett, 2015,9(6):2603-2608.
doi: 10.3892/ol.2015.3079
[49] Kemper K, Sprick M R, de Bree M , et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res, 2010,70(2):719-729.
doi: 10.1158/0008-5472.CAN-09-1820
[50] Glumac P M, Forster C L, Zhou H , et al. The identification of a novel antibody for CD133 using human antibody phage display. The Prostate, 2018,78(13):981-991.
doi: 10.1002/pros.v78.13
[51] Green C L, Loken M, Buck D , et al. Discordant expression of AC133 and AC141 in patients with myelodysplastic syndrome (MDS) and acute myelogeneous leukemia (AML). Leukemia, 2000,14(4):770-772.
[52] Weigmann A, Corbeil D, Hellwig A , et al. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA, 1997,94(23):12425-12430.
doi: 10.1073/pnas.94.23.12425
[53] Platet N, Liu S Y, Atifi M E , et al. Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett, 2007,258(2):286-290.
doi: 10.1016/j.canlet.2007.09.012
[54] Christensen K, Aaberg-Jessen C, Andersen C , et al. Immunohistochemical expression of stem cell, endothelial cell, and chemosensitivity markers in primary glioma spheroids cultured in serum-containing and serum-free medium. Neurosurgery, 2010,66(5):933-947.
doi: 10.1227/01.NEU.0000368393.45935.46
[55] Lang J, Lan X, Liu Y , et al. Targeting cancer stem cells with an 131I-labeled anti-AC133 monoclonal antibody in human colorectal cancer xenografts. Nucl Med Biol, 2015,42(5):505-512.
doi: 10.1016/j.nucmedbio.2015.01.003
[56] Swaminathan S K, Olin M R, Forster C L , et al. Identification of a novel monoclonal antibody recognizing CD133. J Immunol Methods, 2010,361(1-2):110-115.
doi: 10.1016/j.jim.2010.07.007
[57] Holmberg Olausson K, Maire C L, Haidar S , et al. Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS One, 2014,9(9):e106694.
doi: 10.1371/journal.pone.0106694
[58] Angelotti M L, Lazzeri E, Lasagni L , et al. Only anti-CD133 antibodies recognizing the CD133/1 or the CD133/2 epitopes can identify human renal progenitors. Kidney Int, 2010,78(6):620-621.
doi: 10.1038/ki.2010.243
[59] Itai S, Fujii Y, Nakamura T , et al. Establishment of CMab-43, a sensitive and specific anti-CD133 monoclonal antibody, for immunohistochemistry. Monoclon Antib Immunodiagn Immunother, 2017,36(5):231-235.
doi: 10.1089/mab.2017.0031
[60] Fargeas C A, Joester A, Missol-Kolka E , et al. Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. J Cell Sci, 2004,117(Pt 18):4301-4311.
doi: 10.1242/jcs.01315
[61] Shmelkov S V, Jun L, St Clair R , et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood, 2004,103(6):2055-2061.
doi: 10.1182/blood-2003-06-1881
[62] Weng C C, Kuo K K, Su H T , et al. Pancreatic tumor progression associated with CD133 overexpression: involvement of increased TERT expression and epidermal growth factor receptor-dependent Akt activation. Pancreas, 2016,45(3):443-457.
doi: 10.1097/MPA.0000000000000460
[63] Mak A B, Nixon A M, Moffat J . The mixed lineage leukemia (MLL) fusion-associated gene AF4 promotes CD133 transcription. Cancer Res, 2012,72(8):1929-1934.
doi: 10.1158/0008-5472.CAN-11-3589
[64] Xin B, He X, Wang J , et al. Nerve growth factor regulates CD133 function to promote tumor cell migration and invasion via activating ERK1/2 signaling in pancreatic cancer. Pancreatology, 2016,16(6):1005-1014.
doi: 10.1016/j.pan.2016.09.005
[65] Dellett M, Sasai N, Nishide K , et al. Genetic background and light-dependent progression of photoreceptor cell degeneration in Prominin-1 knockout mice. Invest Ophthalmol Vis Sci, 2014,56(1):164-176.
[66] Latorre E, Carelli S, Raimondi I , et al. The ribonucleic complex HuR-MALAT1 represses CD133 expression and suppresses epithelial-mesenchymal transition in breast cancer. Cancer Res, 2016,76(9):2626-2636.
doi: 10.1158/0008-5472.CAN-15-2018
[1] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[2] 陈文洁,苗先锋. 抗体偶联药物国内研发现状及企业布局分析[J]. 中国生物工程杂志, 2021, 41(6): 105-110.
[3] 许叶春,柳红,李剑峰,沈敬山,蒋华良. 抗新冠肺炎药物研究进展[J]. 中国生物工程杂志, 2021, 41(6): 111-118.
[4] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[5] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[6] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[7] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[8] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[9] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[10] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[11] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[12] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[13] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[14] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[15] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.