中国生物工程杂志, 2022, 42(5): 124-138 doi: 10.13523/j.cb.2202049

新冠肺炎疫苗的研究策略

新型冠状病毒亚单位疫苗研究进展及现状*

杨依, 张晴云, 梅坤荣,**

天津大学药物科学与技术学院 天津 300072

Progress and Current Situation of SARS-CoV-2 Subunit Vaccine Development

YANG Yi, ZHANG Qing-yun, MEI Kun-rong,**

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China

通讯作者: **电子信箱: kmei@tju.edu.cn

收稿日期: 2022-02-28   修回日期: 2022-04-18  

基金资助: *天津市青年人才托举工程(TJSQNTJ-2020-19)

Received: 2022-02-28   Revised: 2022-04-18  

摘要

自新型冠状病毒肺炎在2019年年末暴发以来,如何高效防控疫情一直是紧急的全球公共安全事件。疫苗是有效阻止病毒感染人体、保护高危人群免于疾病快速进展以及遏制疫情进一步扩大的手段之一,其中亚单位疫苗的主要成分为特定的病毒抗原蛋白或多肽,通过加入疫苗佐剂提高抗原的免疫原性。由于机体仅针对重组蛋白表面的特定抗原表位进行识别并产生抗体,因此亚单位疫苗具有较高的保护能力和安全性。通过对目前已上市及处于临床阶段的各类新型冠状病毒亚单位疫苗进行梳理,介绍了各类亚单位疫苗的抗原设计策略和佐剂选择、整体保护能力及研究进展,并对亚单位疫苗的应用及技术优势进行分析,期望能为亚单位疫苗研发及全球疫情防控提供参考。

关键词: 新型冠状病毒肺炎; 新型冠状病毒; 亚单位疫苗

Abstract

Since the outbreak of novel coronavirus disease in late 2019, it has been a global public safety emergency to efficiently prevent and control the epidemic. Vaccine is one of the means to effectively prevent the virus from infecting humans, protect high-risk groups from rapid disease progression and minimize further spread of the virus-caused epidemic. Subunit vaccine is a safe and effective strategy that contains recombinant protein antigens of specific viral components and vaccine adjuvant that helps increasing the immunogenicity of the antigen. Since the specific immunogenic viral antigen can activate the immune system, which thus produces antibodies against immunodominant epitopes on the surface of the protein antigen, it offers subunit vaccine a high degree of protection and safety. The major severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) subunit vaccines that have been marketed and are currently in the clinical stage are reviewed. The design concepts of various antigens and types of vaccine adjuvants, the protective capacity, and the research progress of subunit vaccine candidates are introduced. The applications and technical advantages of subunit vaccine are analyzed. This review is expected to provide suggestions for subunit vaccine development and global epidemic prevention and control.

Keywords: COVID-19; SARS-CoV-2; Subunit vaccine

PDF (977KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨依, 张晴云, 梅坤荣. 新型冠状病毒亚单位疫苗研究进展及现状*. 中国生物工程杂志, 2022, 42(5): 124-138 doi:10.13523/j.cb.2202049

YANG Yi, ZHANG Qing-yun, MEI Kun-rong. Progress and Current Situation of SARS-CoV-2 Subunit Vaccine Development. Journal of Chinese Biotechnology, 2022, 42(5): 124-138 doi:10.13523/j.cb.2202049

2019年年末,暴发了由新型冠状病毒(severe acute respiratory symptom coronavirus 2, SARS-CoV-2)引发的新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)疫情。SARS-CoV-2传播速度快、感染能力强、危险系数高,目前已造成全球范围的疫情大流行[1-2]。安全有效的疫苗接种方案可以降低病毒的传播风险及其诱发疾病的严重程度,尤其对老年人等有并发症风险的高危人群具有重要的保护意义,因而是疫情防控的重要手段[3-4]。在2020年年初 SARS-CoV-2被分离并完成测序后,全球范围的疫苗研发工作就在持续展开。亚单位疫苗是一种包含特定病毒抗原的重组蛋白类疫苗,在疫苗佐剂的帮助下,免疫系统能够识别具有高免疫原性的抗原蛋白,针对其中免疫显性的抗原表位产生特异性抗体,具有较高安全性和免疫原性。

截至目前,全球范围内已有12款SARS-CoV-2亚单位疫苗获批上市或紧急使用,另有数十种亚单位疫苗处于临床试验阶段。本文将总结目前SARS-CoV-2亚单位疫苗的主要技术,并对已上市或紧急使用的SARS-CoV-2亚单位疫苗,以及具有代表性的处于临床试验阶段的候选亚单位疫苗进行介绍。

1 SARS-CoV-2介绍

SARS-CoV-2是一种有包膜的单链正义RNA冠状病毒,与引起2003年暴发的严重急性呼吸综合征(severe acute respiratory syndrome, SARS)及2012年暴发的中东呼吸综合征 (Middle East respiratory syndrome, MERS)的冠状病毒同为高致病性β属冠状病毒[5-7]。其基因组编码至少29种蛋白质,包括四种结构蛋白,分别为小囊膜蛋白(envelope protein, E蛋白)、刺突蛋白(spike protein, S蛋白)、膜蛋白(membrane protein, M蛋白)和核衣壳蛋白(nucleocapsid protein, N蛋白),其中S蛋白在受体识别和膜融合中起关键作用[8-10]。天然状态下SARS-CoV-2的S蛋白为广泛分布于病毒囊膜的同源三聚体糖蛋白,每个单体包括S1和S2两个功能性亚基。当S蛋白处于融合前构象(pre-fusion conformation)时,S1亚基通过受体结合域(receptor binding domain, RBD)完成与受体血管紧张素转化酶2(angiotensin-converting enzyme 2, ACE2)的相互作用[11-14]。随后通过宿主蛋白酶对包含Furin酶切位点在内的相关位点的识别,S蛋白被进一步切割变构,S1亚基脱落,激活S2亚基介导的病毒与受体细胞膜的融合过程,最终S蛋白形成三股同轴缠绕螺旋的融合后构象(post-fusion conformation)[15-16]

由于缺乏复制校验机制,RNA病毒存在较高突变概率[17]。随着在人群中广泛传播并引起大规模传染,SARS-CoV-2也在不断变异。S蛋白特定位点的突变可能会改变其与受体或中和抗体的结合亲和力,从而对病毒的感染及传播能力造成一定影响[18-20]。曾经或当前流行的值得关注的SARS-CoV-2突变株主要有五种,均包括S蛋白关键氨基酸的突变[21-24]。其中,突变株B.1.1.7(Alpha)传播力更强,B.1.351(Beta)降低了疫苗的保护效率[25-26]。P.1(Gamma)可能会使COVID-19康复者感染并产生更严重的症状,B.1.617.2 (Delta)则增加了患者的死亡率[27-28]。最近出现的B.1.1.529(Omicron)仅在S蛋白上就存在30余处突变,展现出极强的免疫逃逸能力,严重影响疫苗效力[29-30]。因此,对流行毒株进行密切跟踪并制定相应的疫苗研发策略对全球疫情防控具有重要意义。

2 SARS-CoV-2亚单位疫苗的抗原与佐剂

2.1 SARS-CoV-2亚单位疫苗的抗原设计

亚单位疫苗的主要成分是能诱导机体产生抗体的病原体抗原。SARS-CoV-2的全长S蛋白和RBD等部分S蛋白都可以作为亚单位疫苗的重要候选抗原(图1)。这些S相关蛋白表面存在众多免疫显性的抗原表位,能够诱导机体产生保护性中和抗体,直接或间接地避免病毒与其受体结合,阻止病毒感染[31-33]

图1

图1   SARS-CoV-2 亚单位疫苗候选抗原的主要类型

Fig.1   Antigen candidates of SARS-CoV-2 subunit vaccine

(a) Schematic diagram of the SARS-CoV-2 virion (b) Schematic diagram of S protein trimer in the pre-fusion conformation. TM: Transmembrane region; CT: Cytoplasmic tail (c) Subunit vaccine antigenic design based on S protein (d) Subunit vaccine antigenic design based on RBD (e) Peptide vaccine antigenic design based on specific antigenic epitopes


选取S蛋白胞外域作为抗原,并在其C端引入三聚化标签,可以得到天然状态的亚稳定的S蛋白三聚体。突变Furin酶切位点可以避免包含关键中和抗原表位的S1亚基脱落,从而提高融合前S蛋白的稳定性[11]。常用于稳定融合前S蛋白构象的方案还包括“S-2P”,通过在S2亚基的K986和V987位点引入两个具有刚性结构的脯氨酸突变,阻碍其所在柔性区间重新折叠。该区间是帮助S蛋白变构为融合后构象的关键区域,K986P/V987P不仅能帮助S蛋白稳定在融合前构象,还能大大提高S蛋白的表达量[11,34]。若选用全长S蛋白作为抗原,则无须外源标签即可获得较稳定的S蛋白三聚体。在此基础上进一步对全长S蛋白进行S-2P突变及Furin酶切位点突变,可以获得稳定在融合前构象的S蛋白三聚体。由于S1亚基负责结合受体,其上包含关键的中和抗原表位,因此仅将S1亚基作为亚单位疫苗抗原也是一种可使用的抗原设计策略。为了进一步提升抗原密度,将大量S蛋白抗原展示在纳米颗粒表面,可以诱导机体产生更强烈、更广泛的免疫反应[35-36]

与S蛋白三聚体相比,RBD单体分子量较小,引起的免疫反应较弱。为了提高免疫原性,RBD可通过串联表达、二硫键组装或引入二聚化标签的方式形成二体。通过串联表达或引入三聚化标签的方式,RBD也能形成三聚体抗原。此外,通过引入脂质体或自组装载体蛋白,RBD同样能以组装在纳米颗粒表面的形式递送给免疫系统。

基于特定抗原表位的多肽可以被设计成多肽疫苗。由于多肽的选择更具灵活性,多种肽段组成的抗原成分可以诱导针对不同表位的免疫反应,同时还能避免非中和抗体可能引起的抗体依赖性感染增强(antibody-dependent enhancement, ADE)现象,因而也是一种可供选择的抗原设计方案[37]。由于多肽抗原的尺寸较小,可以引入载体蛋白以提高多肽的免疫原性。

SARS-CoV-2的S蛋白是已知最大的I型融合蛋白之一,每个S蛋白单体存在22个N-糖链结构[38]。这些糖链帮助稳定蛋白质构象,并避免非特异蛋白质相互作用[39-40]。覆盖的糖链会影响病毒抗原的免疫原性,甚至提高病毒的免疫逃逸能力。由于对抗原蛋白结构及其翻译后修饰要求严格,目前研发的SARS-CoV-2亚单位疫苗抗原大多选用昆虫细胞或哺乳动物细胞进行表达。酵母表达系统虽然具有高产率和低成本的优势,但由于具有过糖基化能力,且与哺乳动物细胞表达系统形成的糖型不同,在进行抗原表达时应确认抗原结构与性质不会受酵母的过糖基化影响[41]。此外,植物细胞表达系统因为能够生产糖基化修饰的重组蛋白,并通过植物糖工程实现不同糖基化模式,也是一种可供选择的抗原蛋白生产方式[42-43]

2.2 SARS-CoV-2亚单位疫苗的常用佐剂

由于重组抗原蛋白缺乏病原体相关分子模式,在制备亚单位疫苗时需加入疫苗佐剂以增强抗原的免疫原性,帮助抗原被抗原呈递细胞(antigen presenting cell, APC)捕获。表 1总结了SARS-CoV-2亚单位疫苗研发中常用的几款佐剂。其中铝佐剂是一种较为温和的疫苗佐剂,可以诱导机体产生长效的中和抗体[44-45]。CpG佐剂能显著提高抗体水平,但因其诱导产生的抗体半衰期较短,常与铝佐剂共同使用,可以诱导产生更持久的高水平抗体[46]。Delta-菊粉颗粒能够诱导广泛且均衡的免疫反应,由Delta-菊粉颗粒及CpG组成的Advax-SM佐剂可以显著提高抗体水平,已被用于流感疫苗及乙型肝炎疫苗[47-48]。AS03和MF59均为基于角鲨烯和聚山梨醇酯80的水包油型佐剂,并分别加入α-生育酚和山梨醇三油酸酯。两款佐剂均被用于流感疫苗[49-51]。由皂苷、胆固醇和磷脂组成的Matrix-M则是一类纳米颗粒佐剂,可以帮助大量抗原组装在颗粒表面并刺激机体产生强烈且持久的免疫反应[52]

表1   SARS-CoV-2亚单位疫苗常用佐剂

Table 1   Adjuvants commonly used in SARS-CoV-2 subunit vaccine development

佐剂 组成 应用 参考文献
铝佐剂 氢氧化铝 ZF2001/EpiVacCorona/Soberana 01/Soberana 02/Soberana Plus/Abdala/NVSI-06-07/NVSI-06-08/V-01/GBP510/ Recombinant COVID-19 Vaccine (Sf9 cells) [37,53-60]
CpG/铝佐剂 CpG和氢氧化铝 SCB-2019/MVC-COV1901/Corbevax/202-CoV [61-64]
Matrix-M 皂苷、胆固醇和磷脂 NVX-CoV2373/SII B.1.351/SII B.1.617.2/SII Bivalent [65]
AS03 α-生育酚、角鲨烯和聚山梨醇酯80 CoV2 preS dTM/GBP510 [59,66]
MF59 山梨醇三油酸酯、角鲨烯和聚山梨醇酯80 S-clamp [67]
Advax-SM Delta-菊粉颗粒和CpG COVAX-19® (Spikogen®) [68]

新窗口打开| 下载CSV


3 已上市或进入临床研究的SARS-CoV-2亚单位疫苗

不同的抗原选择,对抗原的不同修饰和改造,以及不同佐剂的使用,使得SARS-CoV-2亚单位疫苗多种多样,其中已上市或获批用于紧急使用的疫苗共有12种,另外进入临床研究阶段的候选疫苗也有数十种。表2表3根据抗原组成分别对已上市和处于临床研究阶段的疫苗进行了总结,主要分为基于S蛋白、RBD和其他特定表位设计的三大类亚单位疫苗。

表2   已获批或用于紧急使用的SARS-CoV-2亚单位疫苗

Table 2   Approved/emergency used SARS-CoV-2 subunit vaccines

疫苗名称 序列及抗原优化 研发单位 佐剂 表达系统 获批情况 参考文献
基于S蛋白设计的亚单位疫苗
MVC-COV1901 1~1208 a.a.R682G/R683S/
R685S/K986P/V987P,C端连接T4纤维蛋白三聚标签
基亚生物 CpG/
铝佐剂
哺乳动物细胞 获批:巴拉圭,索马里兰,中国台湾 [69]
COVAX-19®
(Spikogen®)
/* Vaxine/Cinnagen Advax-SM 昆虫细胞 紧急使用:伊朗 [68]
基于S蛋白设计的纳米颗粒亚单位疫苗
NVX-CoV2373 1~1273 a.a.R682Q/R683Q/R685Q/K986P/V987P 诺瓦瓦克斯 Matrix-M 昆虫细胞 获批:英国,澳大利亚,韩国等36个国家 [65,70-71]
Covovax 1~1273 a.a.R682Q/R683Q/
R685Q/K986P/V987P
诺瓦瓦克斯/
印度血清研究所
Matrix-M 昆虫细胞 紧急使用:印度,印度尼西亚,菲律宾 [72]
基于RBD单体设计的亚单位疫苗
Corbevax 332~549 a.a. Biological E CpG/
铝佐剂
酵母 紧急使用:印度 [63,73]
Abdala
(CIGB-66)
331~529 a.a. 古巴基因工程与
生物技术中心
铝佐剂 酵母 获批:古巴,墨西哥,委内瑞拉等6个国家 [58]
基于RBD二聚体设计的亚单位疫苗
ZF2001 319~537 a.a. 智飞龙科马/
中国科学院微
生物研究所
铝佐剂 哺乳动物细胞 获批:中国,哥伦比亚,印度尼西亚等4个国家 [53,74]
Soberana
Plus
319~541 a.a. 古巴芬利疫苗
研究所
铝佐剂 哺乳动物细胞 获批:古巴 [60]
基于RBD三聚体设计的亚单位疫苗
NVSI-06-07 319~537 a.a. 中国生物研究院 铝佐剂 哺乳动物细胞 紧急使用:阿联酋 [54]
NVSI-06-08 319~537 a.a.野生型/Beta突变株(K417N/E484K/N501Y)/
Kappa突变株(L452R/E484K)
中国生物研究院 铝佐剂 哺乳动物细胞 紧急使用:阿联酋 [75]
基于RBD设计的纳米颗粒亚单位疫苗
Soberana 02 319~541 a.a.连接TT蛋白** 古巴芬利疫苗
研究所
铝佐剂 哺乳动物细胞 获批:伊朗,古巴,尼加拉瓜等4个国家 [76]
基于多肽设计的亚单位疫苗
EpiVac
Corona
连接SARS-CoV-2 N蛋白的多肽片段* 俄罗斯矢量国家
病毒学与生物
技术研究中心
铝佐剂 化学合成 获批:柬埔寨,俄罗斯,委内瑞拉等4个国家 [37]

* The sequence of antigen is not available

** TT:Tetanus toxoid

新窗口打开| 下载CSV


表3   处于临床研究阶段的主要SARS-CoV-2亚单位疫苗

Table 3   Major SARS-CoV-2 subunit vaccines in clinical study

候选疫苗名称 序列及抗原优化 研发单位 佐剂 临床进展 表达系统 参考文献
基于S蛋白设计的亚单位疫苗
COVAC-2 S1* 萨斯喀彻温大学 SWE 2, NCT05209009 / [93]
Versamune-
CoV-2FC
S1* Farmacore / 1/2, NCT05016934 / [94]
SCB-2019 1~1211 a.a.C端引入三聚化标签 三叶草生物制药/
德纳维制药
CpG/
铝佐剂
3, NCT05012787 哺乳动物细胞 [61,78]
S-clamp 1~1204 a.a.将680~690 a.a.替换为GSG,C端引入clamp三聚标签 CSL/Seqirus/
昆士兰大学
MF59 2/3, NCT04806529 哺乳动物细胞 [67]
CoV2 preS dTM 1~1208 a.a.R682G/R683S/R685S/K986P/V987P,C端连接T4纤维蛋白三聚标签 赛诺菲/
葛兰素史克
AS03 3, NCT05124171
PACTR202011523101903
昆虫细胞 [66]
MVC-COV1901** 1~1208 a.a.R682G/R683S/R685S/K986P/V987P,C端连接T4纤维蛋白三聚标签 基亚生物 CpG/
铝佐剂
4, NCT05079633 哺乳动物细胞 [62,69,117]
202-CoV R682G/R683G/A684S/R685G/K986P/V987P,C端连接T4纤维蛋白三聚标签* 上海泽润生物/
沃森生物
CpG∕
铝佐剂
1, NCT04982068 哺乳动物细胞 [64]
YS-SC2-010 1~1208 a.a.R682G/R683S/R685S/K986P/V987P,C端连接T4纤维蛋白三聚标签 依生生物 PIKA 1, ACTRN12621001009808 哺乳动物细胞 [80-81,118]
COVAX-19®
(Spikogen®)**
* Vaxine/Cinnagen Advax-SM 3, IRCT
20150303021315N24
昆虫细胞 [68,119]
SCB-2020S Beta突变株* 三叶草生物制药 CAS-1 2, NCT04950751 哺乳动物细胞 [114]
Bivalent
(2-antigen)
vaccine
野生型及Beta突变株* 赛诺菲∕
葛兰素史克
3, NTC04904549 昆虫细胞 [113]
基于S蛋白设计的纳米颗粒亚单位疫苗
NVX-CoV2373** 1~1273 a.a.R682Q/R683Q/R685Q/K986P/V987P 诺瓦瓦克斯 Matrix-M 3, NCT04611802 昆虫细胞 [65,71,120]
SpFN 12~1158 a.a.R682G/R683S/R685S/K986P/V987P,C端突变修饰并连接铁蛋白 美国沃尔特里德
陆军研究所
QS-21 1, NCT04784767 哺乳动物细胞 [85,91]
SII B.1.351 Beta突变株* 诺瓦瓦克斯 Matrix-M 1∕2, NCT05029856 昆虫细胞 [112]
SII B.1.617.2 Delta突变株* 诺瓦瓦克斯 Matrix-M 1∕2, NCT05029858 昆虫细胞 [112]
SII Bivalent 野生型及Beta突变株* 诺瓦瓦克斯 Matrix-M 1∕2, NCT05029857 昆虫细胞 [112]
基于RBD单体设计的亚单位疫苗
Recombinant
COVID-19 Vaccine
(Sf9 cells)
319~545 a.a. 中国四川大学
华西医院
铝佐剂 3, NCT04887207 昆虫细胞 [98-99]
Abdala
(CIGB-66)**
331~529 a.a. 古巴基因工程与
生物技术中心
铝佐剂 3, RPCEC00000359 酵母 [58,97,121]
Corbevax** 332~549 a.a.C538A Biological E CpG∕
铝佐剂
3, CTRI∕2021∕
08∕036074
酵母 [63,122]
候选疫苗名称 序列及抗原优化 研发单位 佐剂 临床进展 表达系统 参考文献
基于RBD二聚体设计的亚单位疫苗
Soberana 01 319~541 a.a. 古巴芬利疫
苗研究所
铝佐剂∕脑
膜炎奈瑟菌
外膜囊泡
2, RPCEC00000366 哺乳动物细胞 [60]
VAX1 C端连接Fc蛋白* Baiya Phytopharm 1, NCT04953078 植物细胞 [103]
AKS-452 C端连接Fc蛋白* 格罗宁根大学医
学中心∕Akston
Montanide
ISA 720
2, NCT05124483 哺乳动物细胞 [102]
V-01 319~541 a.a.N端连接IFN-α,C端连接Fc蛋白 丽珠医药 铝佐剂 3, NCT05096832 哺乳动物细胞 [56]
UB-612 340~359 a.a.C端连接Fc蛋白,并加入SARS-CoV-2高保守性多肽和公司专利多肽UBITh®1a Vaxxinity CpG∕AlPO4 2∕3, NCT04683224 哺乳动物细胞 [101]
PHH-1V 333~526 a.a.Alpha突变株 (N501Y) 和Beta突变株(K417N∕E484K∕N501Y) Hipra 3, NCT05246137 哺乳动物细胞 [115]
基于RBD三聚体设计的亚单位疫苗
ReCOV N端连接S蛋白N端结构域,C端连接T4纤维蛋白标签* 瑞科生物 BFA03 2∕3, NCT05084989 哺乳动物细胞 [104]
NVSI-06-08** 319~537 a.a.野生型,Beta突变株(K417N∕E484K∕N501Y)及Kappa突变株(L452R∕E484K) 中国生物研究院 铝佐剂 1∕2, NCT05069129 哺乳动物细胞 [55,123]
基于RBD设计的纳米颗粒亚单位疫苗
Soberana 02** 319~541 a.a.C端连接TT蛋白 古巴芬利疫苗
研究所
铝佐剂 3, RPCEC00000354 哺乳动物细胞 [76,124]
KBP-201 加入TMV* 美国肯塔基州
生物加工公司
CpG 1∕2, NCT04473690 烟草植物细胞 [125]
EuCorVac-19 319~541 a.a.加入脂质体 EuBiologics 单磷酸酯
A∕QS-21
1∕2, NCT04783311 哺乳动物细胞 [106]
GBP510 328~531 a.a.加入I53-50蛋白 SK∕CEPI AS03或
铝佐剂
3, NCT05007951 哺乳动物细胞 [59]
基于多肽设计的亚单位疫苗
CoVac-1 S235~249∕N50~64, 221~235∕E56~70∕M176~190∕ORF843~57 图宾根大学 XS15∕
Montanide
ISA51 VG
1∕2, NCT04954469 化学合成 [109]

* The sequence of antigen is not available

** SARS-CoV-2 subunit vaccine that has been marketed or approved for emergency use

新窗口打开| 下载CSV


3.1 基于S蛋白设计的亚单位疫苗

基于S蛋白设计抗原是目前应用较多的一种SARS-CoV-2亚单位疫苗研发策略,各类疫苗通过不同的设计方案将S蛋白稳定在融合前构象(表2表3)。

SCB-2019是三叶草公司研发的基于野生型S蛋白和CpG/铝组合佐剂的亚单位疫苗。该抗原在S蛋白胞外域C端引入一种来源于人I型前胶原蛋白C端的三聚化标签,获得处于融合前构象的野生型S蛋白三聚体[77-78]。Ⅱ/Ⅲ期临床试验结果显示,SCB-2019对重度COVID-19的预防效率达100%,对Delta突变株引起的任何严重程度患者的保护效率达79%[61]。昆士兰大学研发的S-clamp选用S蛋白胞外域作为抗原,并将Furin酶切位点所在的680~690氨基酸序列突变为GSG,同时引入其自主研发的分子钳三聚标签稳定S蛋白三聚体,该标签是一种来自人免疫缺陷病毒1(human immunodeficiency virus 1, HIV-1)糖蛋白gp41的七次重复序列1和2[67]。在Ⅰ期临床试验中,该抗原在MF59佐剂的帮助下展现出良好的免疫原性[79]。但分子钳标签被发现同样刺激免疫反应,因而可能导致HIV诊断测试的假阳性结果。为了避免HIV诊断干扰的问题,昆士兰大学决定停止后续临床试验,改造分子钳序列并重启临床试验。

引入S-2P突变及Furin酶切位点突变(RRAR突变为GSAS或GGAS)以稳定融合前构象,并在S蛋白胞外域C端引入T4纤维蛋白三聚标签,是一种广泛使用的获得融合前S蛋白三聚体抗原的设计方式。赛诺菲和葛兰素史克共同研发的CoV2 preS dTM、基亚生物研发的MVC-COV1901、上海泽润生物及沃森生物研发的202-CoV和依生生物研发的YS-SC2-010均基于该方案构建抗原,其中CoV2 preS dTM使用AS03佐剂,MVC-COV1901和202-CoV使用CpG/铝组合佐剂,YS-SC2-010则选用了一种高效的低成本佐剂PIKA。CoV2 preS dTM的I/Ⅱ期临床数据验证了该疫苗对原始毒株具有中和能力,正在推进的Ⅲ期临床试验将评估突变株循环背景下该疫苗的保护效率[66]。MVC-COV1901的I期临床试验结果显示其对Alpha突变株具有可观的中和能力,但对Beta突变株的中和能力显著降低[62]。目前该疫苗已在中国台湾批准上市,针对Omicron突变株的Ⅲ期临床试验也将开启。202-CoV和YS-SC2-010目前处于I期临床试验阶段,临床前数据均验证了疫苗对Alpha/Beta突变株的中和能力,YS-SC2-010还进一步验证了针对Gamma/Delta/Omicron突变株的中和能力[64,80-81]

S蛋白还能以组装在纳米颗粒表面的方式形成抗原。诺瓦瓦克斯研发的NVX-CoV2373使用全长S蛋白作为抗原,因此无须引入外源标签,仅通过引入S-2P突变和Furin酶切位点突变(RRAR突变为QQAQ)即可将S蛋白三聚体稳定在融合前构象。在Matrix-M佐剂的帮助下,S蛋白三聚体被组装在纳米颗粒表面,诱导强烈的免疫反应[65]。该疫苗对原始毒株的保护效率为96.4%[82]。对于Beta突变株,该疫苗对HIV阴性受试者的保护效率降低至60%[83]。在以Alpha突变株为主(79%),Beta和Gamma突变株多重循环的背景下,该疫苗对任意严重程度的患者的预防效果达92.6%[84]。目前该疫苗已在英国、澳大利亚等36个国家获批。另外,由印度血清研究所负责生产的该疫苗被称为Covovax,已被印度、印度尼西亚和菲律宾授权紧急使用。美国沃尔特里德陆军研究所基于铁蛋白纳米颗粒自组装技术,通过在S蛋白胞外域C端引入一种来自幽门螺杆菌的铁蛋白,研发了一款表面组装24个S蛋白三聚体的蛋白质纳米颗粒疫苗SpFN。SpFN引入S-2P突变和Furin酶切位点突变(RRAR突变为GSAS),并优化C端序列以提高三聚体的稳定性[85]。铁蛋白纳米颗粒的安全性已在两款处于临床试验阶段的流感疫苗中得到验证[86-88]。在QS-21佐剂的帮助下,SpFN的临床前数据显示该疫苗对原始毒株产生了高水平的中和抗体,且对Alpha、Beta突变株甚至SARS-CoV假病毒均展现出中和能力[89-91]。目前该疫苗正在开展Ⅰ期临床试验。

此外,Vaxine/Cinnagen研发的COVAX-19®是基于S蛋白和Advax-SM佐剂的亚单位疫苗,该疫苗能够诱导机体产生针对Alpha/Beta/Gamma/Delta突变株的中和抗体[68,92]。目前COVAX-19®已被伊朗紧急授权使用。由萨斯喀彻温大学研发的COVAC-2和Farmacore研发的Versamune-CoV-2FC则选用S1蛋白作为疫苗抗原,其中COVAC-2选用一种类似MF59佐剂的SWE佐剂,两款疫苗的相关临床试验均在进行中[93-94]

3.2 基于RBD设计的亚单位疫苗

SARS-CoV-2亚单位疫苗的另一种常用抗原为RBD(表2表3)。RBD具有多个已知的中和抗体识别表位,恢复期患者的血清中有90%的中和抗体靶向RBD,因此RBD是中和抗体的主要靶点[32,95]。基于RBD设计的亚单位疫苗可以根据抗原的组装形式进行分类。

RBD单体可以作为亚单位疫苗的候选抗原。古巴基因工程与生物技术中心研发的Abdala和Biological E研发的Corbevax使用酵母表达系统表达RBD,并分别选用铝佐剂及CpG/铝组合佐剂[58,96]。其中,Corbevax通过突变C538位点阻断二硫键造成的分子间聚集,避免关键抗原表位被遮盖。虽然酵母具有过糖基化修饰能力,但两款疫苗的抗原结合受体能力均未受到影响。Abdala对原始毒株的保护效率达92%,针对Beta/Delta突变株的中和能力将在Ⅲ期临床试验中得到评估[97]。Corbevax的Ⅰ/Ⅱ期临床数据显示出该疫苗对Beta和Delta突变株具有中和能力[73]。目前,Abdala和Corbevax已分别在古巴和印度获批上市。另外,四川大学华西医院研发了一款使用RBD单体和铝佐剂的亚单位疫苗,其有效的免疫原性已在Ⅰ/Ⅱ期临床试验中得到证明,目前该疫苗正在进行Ⅲ期临床试验[98-99]

二聚体形式的RBD是目前基于RBD进行亚单位疫苗研发使用最多的抗原设计形式。智飞龙科马与中国科学院微生物研究所共同研发的ZF2001由串联重复的RBD二聚体和铝佐剂组成[53]。Ⅲ期临床数据显示,ZF2001对任何严重程度的COVID-19患者的保护效率达81.67%,对Alpha和Delta突变株的保护效率分别是92.93%和77.54%[74,100]。目前ZF2001已在中国获批使用。古巴芬利疫苗研究所研发的Soberana 01和Soberana Plus均使用二聚RBD抗原和铝佐剂,其RBD的二聚化通过二硫键实现[60]。为了进一步增强抗原的免疫原性,Soberana 01在佐剂中加入脑膜炎奈瑟菌(Neisseria meningitides, NM)的外膜囊泡,其免疫增强能力在Ⅰ期临床试验中得到证明。Baiya Phytopharm研发的VAX1、格罗宁根大学医学中心和Akston研发的AKS-452、丽珠医药研发的V-01和Vaxxinity研发的UB-612通过引入IgG的Fc结构域帮助RBD组成二聚体[56,101-103]。其中,AKS-452使用乳剂型佐剂Montanide ISA 720提高抗原的免疫原性;V-01在RBD-Fc的N端引入α干扰素(interferon-α, IFN-α),并辅助以铝佐剂;UB-612则添加SARS-CoV-2高保守性多肽和Vaxxinity的专利多肽UBITh®1a,在CpG/磷酸铝组合佐剂的帮助下,刺激更广泛的免疫反应。上述疫苗除ZF2001和Soberana Plus外,均在进行相关临床试验。

三聚体形式的RBD也在目前的亚单位疫苗研发中用作候选抗原。中国生物研究院研发的NVSI-06-07基于计算生物学设计,在不引入外源连接臂的前提下,三个同源RBD通过自组装的方式形成稳定的三聚体[55]。由瑞科生物研发的ReCOV疫苗的抗原包含S蛋白的N端结构域和RBD,通过T4纤维蛋白标签实现三聚体抗原的表达[104]。该疫苗同时加入一种类似AS03佐剂的BFA03佐剂以增强免疫原性。临床前数据初步证明了两款疫苗对Alpha/Beta/Gamma/Delta突变株具有中和能力。

由于能够通过增加抗原密度的方式提高免疫原性,将RBD组装在纳米颗粒表面在目前的疫苗设计中也得到广泛使用。古巴芬利疫苗研究所研发的Soberana 02将RBD偶联破伤风类毒素(tetanus toxoid, TT),通过TT的自组装形成一个表面携带多个RBD的大分子结构,加入铝佐剂后,可以诱导产生高水平的中和抗体[76]。Ⅲ期临床数据显示,在Beta/Delta突变株流行的背景下,Soberana 02具有71%的交叉保护效率[57]。目前该疫苗已在古巴获批使用,同时针对包括Omicron突变株在内的临床试验正在进行中。在RBD抗原的基础上,美国肯塔基州生物加工公司研发的KBP-201通过加入植物细胞表达的烟草花叶病毒(tobacco mosaic virus, TMV),得到携带大量RBD的TMV颗粒。该疫苗使用CpG佐剂[105]。EuBiologics研发的EuCorVac-19在抗原制备时,通过加入脂质体的方式将大量RBD组装在脂质体颗粒表面,并加入单磷酸酯A/QS-21混合佐剂[106]。SK和CEPI共同研发的GBP510则通过在抗原组分中加入计算机设计的I53-50蛋白,形成一个表面嵌合60个RBD的纳米颗粒,分别加入AS03佐剂或铝佐剂作为两种候选疫苗[59]。目前Soberana 02、KBP-201、EuCorVac-19和GBP510的相关临床试验均在进行中。

3.3 基于特定抗原表位设计的多肽疫苗

俄罗斯矢量国家病毒与生物技术研究中心研发了一款基于合成多肽的亚单位疫苗EpiVacCorona,目前已被批准在俄罗斯本土使用。考虑到针对病毒突变株的保护效率,该疫苗从S蛋白的保守区域选择能够诱导保护性中和抗体产生的特定抗原表位,并合成到多肽片段中[37]。为了提高多肽片段的免疫原性,该疫苗选用高免疫原性的N蛋白作为载体蛋白,并加入铝佐剂[107]。俄国卫星通讯社称该疫苗的保护效率达100%,对包括Omicron在内的所有流行突变株均有效,且不存在安全问题,但暂未公开临床数据[108]。图宾根大学研发的CoVac-1从S/N/E/M结构蛋白及可读框8(open reading frame 8, ORF8)中筛选抗原表位,设计能够诱导广泛免疫反应的多肽片段[109]。该疫苗选用XS15/Montanide ISA51 VG组合佐剂以避免多肽在体内快速降解,从而诱导长效的免疫反应。目前该疫苗正在进行Ⅰ/Ⅱ期临床试验。

4 SARS-CoV-2亚单位疫苗的现状及挑战

截至目前,疫苗仍然是预防SARS-CoV-2感染、降低COVID-19患者重症率的有效方法之一。但是,不断出现的病毒突变株也对疫苗的保护效率发起了挑战。为了解决疫苗对病毒突变株保护效率有限的问题,各研发单位正在评估注射加强针的接种方案。目前,中国已正式将ZF2001作为国药中生/科兴灭活病毒疫苗的加强针,阿联酋也紧急批准NVSI-06-07作为国药中生灭活病毒疫苗的加强针。这两类疫苗接种方案的临床数据均证明异源加强针能够诱导针对野生型毒株及Alpha/Beta/Delta三种突变株更高水平的中和抗体[54,110-111]。NVSI-06-07还展现出针对Omicron突变株的高中和抗体水平。古巴将Soberana Plus作为Soberana 02的异源加强针,该接种方案能够进一步增加中和抗体滴度和最终保护效率[57]。NVX-CoV2373、MVC-COV1901和Soberana 02正在开展Ⅲ/Ⅳ期临床试验,评估NVX-CoV2373作为国药中生灭活病毒疫苗的加强针、MVC-COV1901作为莫德纳mRNA疫苗的加强针、Soberana 02作为国药中生灭活病毒疫苗或阿斯利康腺病毒疫苗的加强针的接种方案对流行突变株的保护能力。此外,COVAX-19®也计划开展加强针相关的临床试验。亚单位疫苗异源加强针接种方案的有效性已由临床数据初步证明,该策略对突变株流行背景下的疫情控制起到一定的指导作用,但由于目前处于主导地位的是Omicron突变株,各类疫苗的临床试验均应评估针对该突变株的保护效率。

为了应对已出现及未来可能出现的新型突变株,突变株改良型及广谱型亚单位疫苗的研发工作也在持续开展中。高免疫逃逸性的Beta突变株已被多个研发单位选为疫苗抗原并开启相关临床试验,如基于Beta突变株S蛋白的SCB-2020S(三叶草)和SII B.1.351(诺瓦瓦克斯),以及基于Beta突变株和野生型S蛋白的二价亚单位疫苗SII Bivalent(诺瓦瓦克斯)和Bivalent(2-antigen)vaccine(赛诺菲/葛兰素史克)[112-114]。其中诺瓦瓦克斯研发的疫苗沿用Martix-M佐剂,三叶草则使用自主研发的CAS-1佐剂。此外,由Alpha/Beta突变株RBD组成的二价疫苗PHH-1V(Hipra),以及由野生型/Beta/Kappa突变株RBD组成的三价疫苗NVSI-06-08(中国生物研究院)均已进入临床试验阶段,临床前数据均证明疫苗对Alpha/Beta/Gamma/Delta突变株具有保护能力[55,115]。NVSI-06-08是在NVSI-06-07的基础上,根据突变株的免疫逃逸能力和进化规律进行抗原选择和设计的。Kappa突变株由于也具有一定的免疫逃逸能力,被归类为感兴趣的突变株[116]。与NVSI-06-07相比,NVSI-06-08展现出对突变株更强的广谱中和能力。临床数据显示,与国药中生灭活病毒疫苗同源加强针及NVSI-06-07加强针相比,NVSI-06-08可诱导更高水平的针对野生型及包括Omicron在内的所有需关注突变株的中和抗体[75]。目前该疫苗已在阿联酋获批紧急使用,作为国药中生灭活病毒疫苗的异源加强针,评估其安全性和免疫原性的Ⅲ期临床试验仍在进行中。诺瓦瓦克斯还研发了一款使用Delta突变株S蛋白作为抗原的SII B.1.617.2,该疫苗也正处于临床试验阶段[112]

亚单位疫苗依据抗原蛋白的特定功能及抗原表位进行抗原的挑选和优化,限定了免疫细胞的识别范围,未在临床试验中发现严重副作用。在实际应用当中,亚单位疫苗抗原的生产基于成熟的蛋白质表达工业体系,能够保证疫苗的稳定供应。此外,亚单位疫苗对保存和运输温度没有苛刻要求,在价格和成本上均具有一定优势,对中低收入国家更为友好。在提供安全性、有效性的同时,亚单位疫苗也能够满足生产、运输、供应等多个环节的需求,成为对突发疾病蔓延和大流行做出快速反应的重要候选疫苗体系。

参考文献

Zhu N, Zhang D Y, Wang W L, et al.

A novel coronavirus from patients with pneumonia in China, 2019

The New England Journal of Medicine, 2020, 382(8): 727-733.

PMID:31978945      [本文引用: 1]

In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).Copyright © 2020 Massachusetts Medical Society.

Wu F, Zhao S, Yu B, et al.

A new coronavirus associated with human respiratory disease in China

Nature, 2020, 579 (7798): 265-269.

URL     [本文引用: 1]

Doherty M, Schmidt-Ott R, Santos J I, et al.

Vaccination of special populations: protecting the vulnerable

Vaccine, 2016, 34(52): 6681-6690.

PMID:27876197      [本文引用: 1]

One of the strategic objectives of the 2011-2020 Global Vaccine Action Plan is for the benefits of immunisation to be equitably extended to all people. This approach encompasses special groups at increased risk of vaccine-preventable diseases, such as preterm infants and pregnant women, as well as those with chronic and immune-compromising medical conditions or at increased risk of disease due to immunosenescence. Despite demonstrations of effectiveness and safety, vaccine uptake in these special groups is frequently lower than expected, even in developed countries with vaccination strategies in place. For example, uptake of the influenza vaccine in pregnancy rarely exceeds 50% in developed countries and, although data are scarce, it appears that only half of preterm infants are up-to-date with routine paediatric vaccinations. Many people with chronic medical conditions or who are immunocompromised due to disease or aging are also under-vaccinated. In the US, coverage among people aged 65years or older was 67% for the influenza vaccine in the 2014-2015 season and 55-60% for tetanus and pneumococcal vaccines in 2013, while the coverage rate for herpes zoster vaccination among those aged 60years or older was only 24%. In most other countries, rates are far lower. Reasons for under-vaccination of special groups include fear of adverse outcomes or illness caused by the vaccine, the inconvenience (and in some settings, cost) of vaccination and lack of awareness of the need for vaccination or national recommendations. There is also evidence that healthcare providers' attitudes towards vaccination are among the most important influences on the decision to vaccinate. It is clear that physicians' adherence to recommendations needs to be improved, particularly where patients receive care from multiple subspecialists and receive little or no care from primary care providers.Copyright © 2016. Published by Elsevier Ltd.

Lee A R Y B, Wong S Y, Chai L Y A, et al.

Efficacy of COVID-19 vaccines in immunocompromised patients: systematic review and meta-analysis

BMJ (Clinical Research Ed), 2022, 376: e068632.

[本文引用: 1]

Cui J, Li F, Shi Z L.

Origin and evolution of pathogenic coronaviruses

Nature Reviews Microbiology, 2019, 17 (3): 181-192.

URL     [本文引用: 1]

Drosten C, Günther S, Preiser W, et al.

Identification of a novel coronavirus in patients with severe acute respiratory syndrome

The New England Journal of Medicine, 2003, 348(20): 1967-1976.

URL     [本文引用: 1]

Zaki A M, van Boheemen S, Bestebroer T M, et al.

Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia

The New England Journal of Medicine, 2012, 367(19): 1814-1820.

PMID:23075143      [本文引用: 1]

A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.

Zhou P, Yang X L, Wang X G, et al.

A pneumonia outbreak associated with a new coronavirus of probable bat origin

Nature, 2020, 579 (7798): 270-273.

URL     [本文引用: 1]

Yao H P, Song Y T, Chen Y, et al.

Molecular architecture of the SARS-CoV-2 virus

Cell, 2020, 183(3): 730-738.e13.

URL     [本文引用: 1]

Hoffmann M, Kleine-Weber H, Schroeder S, et al.

SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor

Cell, 2020, 181(2): 271-280.e8.

PMID:32142651      [本文引用: 1]

The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.Copyright © 2020 Elsevier Inc. All rights reserved.

Wrapp D, Wang N S, Corbett K S, et al.

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

Science, 2020, 367(6483): 1260-1263.

URL     [本文引用: 3]

Lan J, Ge J, Yu J, et al.

Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor

Nature, 2020, 581 (7807): 215-220.

URL     [本文引用: 1]

Shang J, Ye G, Shi K, et al.

Structural basis of receptor recognition by SARS-CoV-2

Nature, 2020, 581 (7807): 221-224.

URL     [本文引用: 1]

Wang Q H, Zhang Y F, Wu L L, et al.

Structural and functional basis of SARS-CoV-2 entry by using human ACE2

Cell, 2020, 181(4): 894-904.e9.

URL     [本文引用: 1]

Cai Y F, Zhang J, Xiao T S, et al.

Distinct conformational states of SARS-CoV-2 spike protein

Science, 2020, 369(6511): 1586-1592.

URL     [本文引用: 1]

Ke Z, Oton J, Qu K, et al.

Structures and distributions of SARS-CoV-2 spike proteins on intact virions

Nature, 2020, 588 (7838): 498-502.

URL     [本文引用: 1]

Lauring A S, Andino R.

Quasispecies theory and the behavior of RNA viruses

PLoS Pathogens, 2010, 6(7): e1001005.

URL     [本文引用: 1]

Li Q Q, Wu J J, Nie J H, et al.

The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity

Cell, 2020, 182(5): 1284-1294.e9.

URL     [本文引用: 1]

Volz E, Hill V, McCrone J T, et al.

Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity

Cell, 2021, 184(1): 64-75.e11.

URL     [本文引用: 1]

Garcia-Beltran W F, Lam E C, St Denis K, et al.

Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity

Cell, 2021, 184(9): 2372-2383.e9.

PMID:33743213      [本文引用: 1]

Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of these variants, we evaluated the neutralization potency of 99 individuals that received one or two doses of either BNT162b2 or mRNA-1273 vaccines against pseudoviruses representing 10 globally circulating strains of SARS-CoV-2. Five of the 10 pseudoviruses, harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Cross-neutralization of B.1.351 variants was comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

Faria N R, Mellan T A, Whittaker C, et al.

Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

Science, 2021, 372(6544): 815-821.

PMID:33853970      [本文引用: 1]

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1, acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7-2.4-fold more transmissible, and that previous (non-P.1) infection provides 54-79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.Copyright © 2021, American Association for the Advancement of Science.

Dhar M S, Marwal R, Vs R, et al.

Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India

Science, 2021, 374(6570): 995-999.

URL     [本文引用: 1]

Tegally H, Wilkinson E, Lessells R J, et al.

Sixteen novel lineages of SARS-CoV-2 in South Africa

Nature Medicine, 2021, 27 (3): 440-446.

URL     [本文引用: 1]

Yadav P D, Gupta N, Potdar V, et al.

Isolation and genomic characterization of SARS-CoV-2 Omicron variant obtained from human clinical specimens

Viruses, 2022, 14(3): 461.

URL     [本文引用: 1]

Davies N G, Abbott S, Barnard R C, et al.

Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England

Science, 2021, 372(6538): eabg3055.

URL     [本文引用: 1]

Wang P, Nair M S, Liu L, et al.

Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7

Nature, 2021, 593 (7857): 130-135.

URL     [本文引用: 1]

Wang P F, Casner R G, Nair M S, et al.

Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization

Cell Host & Microbe, 2021, 29(5): 747-751.e4.

[本文引用: 1]

Li B, Deng A, Li K, et al.

Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant

Nature Communications, 2022, 13: 460.

URL     [本文引用: 1]

Cele S, Jackson L, Khoury D S, et al.

Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization

Nature, 2022, 602 (7898): 654-656.

URL     [本文引用: 1]

Liu L, Iketani S, Guo Y, et al.

Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2

Nature, 2022, 602 (7898): 676-681.

URL     [本文引用: 1]

Ge J, Wang R, Ju B, et al.

Antibody neutralization of SARS-CoV-2 through ACE 2 receptor mimicry

Nature Communications, 2021, 12: 250.

URL     [本文引用: 1]

Piccoli L, Park Y J, Tortorici M A, et al.

Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology

Cell, 2020, 183(4): 1024-1042.e21.

PMID:32991844      [本文引用: 2]

Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.Copyright © 2020 Elsevier Inc. All rights reserved.

Barnes C O, West A P Jr, Huey-Tubman K E, et al.

Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies

Cell, 2020, 182(4): 828-842.e16.

URL     [本文引用: 1]

Pallesen J, Wang N S, Corbett K S, et al.

Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen

Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): E7348-E7357.

[本文引用: 1]

Chattopadhyay S, Chen J Y, Chen H W, et al.

Nanoparticle vaccines adopting virus-like features for enhanced immune potentiation

Nanotheranostics, 2017, 1(3): 244-260.

PMID:29071191      [本文引用: 1]

Synthetic nanoparticles play an increasingly significant role in vaccine design and development as many nanoparticle vaccines show improved safety and efficacy over conventional formulations. These nanoformulations are structurally similar to viruses, which are nanoscale pathogenic organisms that have served as a key selective pressure driving the evolution of our immune system. As a result, mechanisms behind the benefits of nanoparticle vaccines can often find analogue to the interaction dynamics between the immune system and viruses. This review covers the advances in vaccine nanotechnology with a perspective on the advantages of virus mimicry towards immune potentiation. It provides an overview to the different types of nanomaterials utilized for nanoparticle vaccine development, including functionalization strategies that bestow nanoparticles with virus-like features. As understanding of human immunity and vaccine mechanisms continue to evolve, recognizing the fundamental semblance between synthetic nanoparticles and viruses may offer an explanation for the superiority of nanoparticle vaccines over conventional vaccines and may spur new design rationales for future vaccine research. These nanoformulations are poised to provide solutions towards pressing and emerging human diseases.

Zhao L, Seth A, Wibowo N, et al.

Nanoparticle vaccines

Vaccine, 2014, 32(3): 327-337.

URL     [本文引用: 1]

Ryzhikov A B, Ryzhikov E А, Bogryantseva M P, et al.

Immunogenicity and protectivity of the peptide candidate vaccine against SARS-CoV-2

Annals of the Russian Academy of Medical Sciences, 2021, 76(1): 5-19.

URL     [本文引用: 4]

Casalino L, Gaieb Z, Goldsmith J A, et al.

Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein

ACS Central Science, 2020, 6(10): 1722-1734.

PMID:33140034      [本文引用: 1]

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 28,000,000 infections and 900,000 deaths worldwide to date. Antibody development efforts mainly revolve around the extensively glycosylated SARS-CoV-2 spike (S) protein, which mediates host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2). Similar to many other viral fusion proteins, the SARS-CoV-2 spike utilizes a glycan shield to thwart the host immune response. Here, we built a full-length model of the glycosylated SARS-CoV-2 S protein, both in the open and closed states, augmenting the available structural and biological data. Multiple microsecond-long, all-atom molecular dynamics simulations were used to provide an atomistic perspective on the roles of glycans and on the protein structure and dynamics. We reveal an essential structural role of -glycans at sites N165 and N234 in modulating the conformational dynamics of the spike's receptor binding domain (RBD), which is responsible for ACE2 recognition. This finding is corroborated by biolayer interferometry experiments, which show that deletion of these glycans through N165A and N234A mutations significantly reduces binding to ACE2 as a result of the RBD conformational shift toward the "down" state. Additionally, end-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of the SARS-CoV-2 S protein, which may be exploited in the therapeutic efforts targeting this molecular machine. Overall, this work presents hitherto unseen functional and structural insights into the SARS-CoV-2 S protein and its glycan coat, providing a strategy to control the conformational plasticity of the RBD that could be harnessed for vaccine development.

Walls A C, Tortorici M A, Frenz B, et al.

Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy

Nature Structural & Molecular Biology, 2016, 23 (10): 899-905.

URL     [本文引用: 1]

Walls A C, Xiong X L, Park Y J, et al.

Unexpected receptor functional mimicry elucidates activation of coronavirus fusion

Cell, 2019, 176(5): 1026-1039.e15.

URL     [本文引用: 1]

Çelik E, Çalı P.

Production of recombinant proteins by yeast cells

Biotechnology Advances, 2012, 30(5): 1108-1118.

URL     [本文引用: 1]

Shanmugaraj B, Bulaon C J I, Phoolcharoen W.

Plant molecular farming: a viable platform for recombinant biopharmaceutical production

Plants (Basel, Switzerland), 2020, 9(7): 842.

[本文引用: 1]

郝宇娉, 陆琳, 杨志红.

转基因植物疫苗的研究进展

核农学报, 2020, 34(12): 2708-2724.

[本文引用: 1]

Hao Y P, Lu L, Yang Z H.

Progress on transgenic plants vaccines

Journal of Nuclear Agricultural Sciences, 2020, 34(12): 2708-2724.

[本文引用: 1]

Luo M, Shao B, Yu J Y, et al.

Simultaneous enhancement of cellular and humoral immunity by the high salt formulation of Al(OH)3 adjuvant

Cell Research, 2017, 27 (4): 586-589.

URL     [本文引用: 1]

张林焱, 周旭.

疫苗用氢氧化铝佐剂的研究现状

中国生物制品学杂志, 2020, 33(2): 213-215, 221.

[本文引用: 1]

Zhang L Y, Zhou X.

Research status of aluminum hydroxide adjuvant for vaccine

Chinese Journal of Biologicals, 2020, 33(2): 213-215, 221.

[本文引用: 1]

Bode C, Zhao G, Steinhagen F, et al.

CpG DNA as a vaccine adjuvant

Expert Review of Vaccines, 2011, 10(4): 499-511.

URL     [本文引用: 1]

Gordon D L, Sajkov D, Honda-Okubo Y, et al.

Human phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax? delta inulin adjuvant

Vaccine, 2016, 34(33): 3780-3786.

PMID:27342914      [本文引用: 1]

Influenza vaccines are usually non-adjuvanted but addition of adjuvant may improve immunogenicity and permit dose-sparing, critical for vaccine supply in the event of an influenza pandemic. The aim of this first-in-man study was to determine the effect of delta inulin adjuvant on the safety and immunogenicity of a reduced dose seasonal influenza vaccine. Healthy male and female adults aged 18-65years were recruited to participate in a randomized controlled study to compare the safety, tolerability and immunogenicity of a reduced-dose 2007 Southern Hemisphere trivalent inactivated influenza vaccine formulated with Advax™ delta inulin adjuvant (LTIV+Adj) when compared to a full-dose of the standard TIV vaccine which does not contain an adjuvant. LTIV+Adj provided equivalent immunogenicity to standard TIV vaccine as assessed by hemagglutination inhibition (HI) assays against each vaccine strain as well as against a number of heterosubtypic strains. HI responses were sustained at 3months post-immunisation in both groups. Antibody landscapes against a large panel of H3N2 influenza viruses showed distinct age effects whereby subjects over 40years old had a bimodal baseline HI distribution pattern, with the highest HI titers against the very oldest H3N2 isolates and with a second HI peak against influenza isolates from the last 5-10years. By contrast, subjects >40years had a unimodal baseline HI distribution with peak recognition of H3N2 isolates from approximately 20years ago. The reduced dose TIV vaccine containing Advax adjuvant was well tolerated and no safety issues were identified. Hence, delta inulin may be a useful adjuvant for use in seasonal or pandemic influenza vaccines. Australia New Zealand Clinical Trial Registry: ACTRN12607000599471.Copyright © 2016 Elsevier Ltd. All rights reserved.

Gordon D, Kelley P, Heinzel S, et al.

Immunogenicity and safety of AdvaxTM, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: a randomized controlled phase 1 study

Vaccine, 2014, 32(48): 6469-6477.

PMID:25267153      [本文引用: 1]

There is a need for additional safe and effective human vaccine adjuvants. Advax™ is a novel adjuvant produced from semi-crystalline particles of delta inulin. In animal studies Advax enhanced humoral and cellular immunity to hepatitis B surface antigen (HBsAg) without inducing local or systemic reactogenicity. This first-in-man Phase 1 clinical trial tested the safety and tolerability of three intramuscular doses of HBsAg formulated with Advax in a group of healthy adult subjects. Advax was well tolerated with injection site pain scores not significantly different to subjects receiving HBsAg alone and no adverse events were reported in subjects that received Advax. Seroprotection and HBsAb geometric mean titers (GMT) after three immunizations were higher in the Advax 5mg (seroprotection 5/6, 83.3%, GMT 40.7, 95% CI 11.9-139.1) and 10mg (seroprotection 4/5, 80%, GMT 51.6, 95% CI 10.0-266.2) groups versus HBsAg alone (seroprotection 1/5, 20%, GMT 4.1, 95% CI 1.3-12.8). Similarly the proportion of subjects with positive CD4 T-cell responses to HBsAg was higher in the Advax 5mg (4/6, 67%) and Advax 10mg (4/5, 80%) groups versus HBsAg alone (1/5, 20%). These results confirm the safety, tolerability and immunogenicity of Advax adjuvant observed in preclinical studies. Advax may represent a suitable replacement for alum adjuvants in prophylactic human vaccines subject to confirmation of current results in larger studies. Australia and New Zealand Clinical Trial Registry: ACTRN12607000598482. Copyright © 2014 Elsevier Ltd. All rights reserved.

Garçon N, Vaughn D W, Didierlaurent A M.

Development and evaluation of AS03, an adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion

Expert Review of Vaccines, 2012, 11(3): 349-366.

URL     [本文引用: 1]

Cohet C, van der Most R, Bauchau V, et al.

Safety of AS03-adjuvanted influenza vaccines: a review of the evidence

Vaccine, 2019, 37(23): 3006-3021.

URL     [本文引用: 1]

Black S, Della Cioppa G, Malfroot A, et al.

Safety of MF59-adjuvanted versus non-adjuvanted influenza vaccines in children and adolescents: an integrated analysis

Vaccine, 2010, 28(45): 7331-7336.

URL     [本文引用: 1]

Bengtsson K L, Song H F, Stertman L, et al.

Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola∕Makona virus glycoprotein (GP) nanoparticle vaccine in mice

Vaccine, 2016, 34(16): 1927-1935.

PMID:26921779      [本文引用: 1]

Ebola virus (EBOV) causes severe hemorrhagic fever for which there is no approved treatment or preventive vaccine. Immunological correlates of protective immunity against EBOV disease are not well understood. However, non-human primate studies have associated protection of experimental vaccines with binding and neutralizing antibodies to the EBOV glycoprotein (GP) as well as EBOV GP-specific CD4(+) and CD8(+) T cells. In this report a full length, unmodified Zaire EBOV GP gene from the 2014 EBOV Makona strain (EBOV/Mak) was cloned into a baculovirus vector. Recombinant EBOV/Mak GP was produced in Sf9 insect cells as glycosylated trimers and, when purified, formed spherical 30-40 nm particles. In mice, EBOV/Mak GP co-administered with the saponin adjuvant Matrix-M was significantly more immunogenic, as measured by virus neutralization titers and anti-EBOV/Mak GP IgG as compared to immunization with AlPO4 adjuvanted or non-adjuvanted EBOV/Mak GP. Similarly, antigen specific T cells secreting IFN-γ were induced most prominently by EBOV/Mak GP with Matrix-M. Matrix-M also enhanced the frequency of antigen-specific germinal center B cells and follicular helper T (TFH) cells in the spleen in a dose-dependent manner. Immunization with EBOV/Mak GP with Matrix-M was 100% protective in a lethal viral challenge murine model; whereas no protection was observed with the AlPO4 adjuvant and only 10% (1/10) mice were protected in the EBOV/Mak GP antigen alone group. Matrix-M adjuvanted vaccine induced a rapid onset of specific IgG and neutralizing antibodies, increased frequency of multifunctional CD4+ and CD8(+) T cells, specific TFH cells, germinal center B cells, and persistence of EBOV GP-specific plasma B cells in the bone marrow. Taken together, the addition of Matrix-M adjuvant to the EBOV/Mak GP nanoparticles enhanced both B and T-cell immune stimulation which may be critical for an Ebola subunit vaccine with broad and long lasting protective immunity.Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

Dai L P, Zheng T Y, Xu K, et al.

A universal design of Betacoronavirus vaccines against COVID-19, MERS, and SARS

Cell, 2020, 182(3): 722-733.e11.

URL     [本文引用: 3]

AlKaabi N, Yang Y K, Zhang J, et al.

Safety and immunogenicity of a heterologous boost with a recombinant vaccine, NVSI-06-07, in the inactivated vaccine recipients from UAE: a phase 2 randomised, double-blinded, controlled clinical trial

medRxiv, 2022. DOI: 10.1101∕2021.12.29.21268499.

[本文引用: 3]

Liang Y, Zhang J, Yuan R Y, et al.

Design of a mutation-integrated trimeric RBD with broad protection against SARS-CoV-2

Cell Discovery, 2022, 8: 17.

PMID:35169113      [本文引用: 4]

The continuous emergence of SARS-CoV-2 variants highlights the need of developing vaccines with broad protection. Here, according to the immune-escape capability and evolutionary convergence, the representative SARS-CoV-2 strains carrying the hotspot mutations were selected. Then, guided by structural and computational analyses, we present a mutation-integrated trimeric form of spike receptor-binding domain (mutI-tri-RBD) as a broadly protective vaccine candidate, which combined heterologous RBDs from different representative strains into a hybrid immunogen and integrated immune-escape hotspots into a single antigen. When compared with a homo-tri-RBD vaccine candidate in the stage of phase II trial, of which all three RBDs are derived from the SARS-CoV-2 prototype strain, mutI-tri-RBD induced significantly higher neutralizing antibody titers against the Delta and Beta variants, and maintained a similar immune response against the prototype strain. Pseudo-virus neutralization assay demonstrated that mutI-tri-RBD also induced broadly strong neutralizing activities against all tested 23 SARS-CoV-2 variants. The in vivo protective capability of mutI-tri-RBD was further validated in hACE2-transgenic mice challenged by the live virus, and the results showed that mutI-tri-RBD provided potent protection not only against the SARS-CoV-2 prototype strain but also against the Delta and Beta variants.© 2022. The Author(s).

Sun S, Cai Y, Song T Z, et al.

Interferon-armed RBD dimer enhances the immunogenicity of RBD for sterilizing immunity against SARS-CoV-2

Cell Research, 2021, 31 (9): 1011-1023.

URL     [本文引用: 3]

Toledo-Romani M E, Garcia-Carmenate M, Silva C V, et al.

Efficacy and safety of Soberana 02, a COVID-19 conjugate vaccine in heterologous three-dose combination

medRxiv, 2021. DOI: 10.1101∕2021.10.31.21265703.

[本文引用: 3]

Limonta-Fernández M, Chinea-Santiago G, Martín-Dunn A M, et al.

The SARS-CoV-2 receptor-binding domain expressed in Pichia pastoris as a candidate vaccine antigen

medRxiv, 2021. DOI: 10.1101∕2021.06.29.21259605.

[本文引用: 4]

Walls A C, Fiala B, Schäfer A, et al.

Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2

Cell, 2020, 183(5): 1367-1382.e17.

URL     [本文引用: 4]

Pérez-Rodríguez S, de la Caridad Rodríguez-González M, Ochoa-Azze R, et al.

A randomized, double-blind phase I clinical trial of two recombinant dimeric RBD COVID-19 vaccine candidates: safety, reactogenicity and immunogenicity

Vaccine, 2022, 40(13): 2068-2075.

PMID:35164986      [本文引用: 4]

The Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is the target for many COVID-19 vaccines. Here we report results for phase I clinical trial of two COVID-19 vaccine candidates based on recombinant dimeric RBD (d-RBD).We performed a randomized, double-blind, phase I clinical trial in the National Centre of Toxicology in Havana. Sixty Cuban volunteers aged 19-59 years were randomized into three groups (20 subjects each): 1) FINLAY-FR-1 (50 µg d-RBD plus outer membrane vesicles from N. meningitidis); 2) FINLAY-FR-1A-50 (50 µg d-RBD, three doses); 3) FINLAY-FR-1A-25 (25 µg d-RDB, three doses). The FINLAY-FR-1 group was randomly divided to receive a third dose of the same vaccine candidate (homologous schedule) or FINLAY-FR-1A-50 (heterologous schedule). The primary outcomes were safety and reactogenicity. The secondary outcome was vaccine immunogenicity. Humoral response at baseline and following each vaccination was evaluated using live-virus neutralization test, anti-RBD IgG ELISA and in-vitro neutralization test of RBD:hACE2 interaction.Most adverse events were of mild intensity (63.5%), solicited (58.8%), and local (61.8%); 69.4% with causal association with vaccination. Serious adverse events were not found. The FINLAY-FR-1 group reported more subjects with adverse events than the other two groups. After the third dose, anti-RBD seroconversion was 100%, 94.4% and 90% for the FINLAY-FR-1, FINLAY-FR-1A-50 and FINLAY-FR-1A-25 respectively. The in-vitro inhibition of RBD:hACE2 interaction increased after the second dose in all formulations. The geometric mean neutralizing titres after the third dose rose significantly in the group vaccinated with FINLAY-FR-1 with respect to the other formulations and the COVID-19 Convalescent Serum Panel. No differences were found between FINLAY-FR-1 homologous or heterologous schedules.Vaccine candidates were safe and immunogenic, and induced live-virus neutralizing antibodies against SARS-CoV-2. The highest values were obtained when outer membrane vesicles were used as adjuvant.https://rpcec.sld.cu/en/trials/RPCEC00000338-En.Copyright © 2022 Elsevier Ltd. All rights reserved.

Bravo L, Smolenov I, Han H H, et al.

Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: a phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial

The Lancet, 2022, 399(10323): 461-472.

URL     [本文引用: 3]

Lien C E, Kuo T Y, Lin Y J, et al.

Evaluating the neutralizing ability of a CpG-adjuvanted S-2P subunit vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern

Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America, 2021, 2021Nov5: ciab711.

[本文引用: 3]

Nanishi E, Borriello F, O’Meara T R, et al.

An aluminum hydroxide: CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice

Science Translational Medicine, 2022, 14(629): eabj5305.

URL     [本文引用: 3]

Liu H T, Zhou C L, An J, et al.

Development of recombinant COVID-19 vaccine based on CHO-produced, prefusion spike trimer and alum∕CpG adjuvants

Vaccine, 2021, 39(48): 7001-7011.

URL     [本文引用: 3]

Tian J H, Patel N, Haupt R, et al.

SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV 2373 immunogenicity in baboons and protection in mice

Nature Communications, 2021, 12: 372.

URL     [本文引用: 4]

Sridhar S, Joaquin A, Bonaparte M I, et al.

Safety and immunogenicity of an AS03-adjuvanted SARS-CoV-2 recombinant protein vaccine (CoV 2 preS dTM) in healthy adults: interim findings from a phase 2, randomised, dose-finding, multicentre study

The Lancet Infectious Diseases, 2022, S1473- (21)00764-7.

[本文引用: 3]

Watterson D, Wijesundara D K, Modhiran N, et al.

Preclinical development of a molecular clamp-stabilised subunit vaccine for severe acute respiratory syndrome coronavirus 2

Clinical & Translational Immunology, 2021, 10(4): e1269.

[本文引用: 3]

Li L, Honda-Okubo Y, Huang Y, et al.

Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection

Vaccine, 2021, 39(40): 5940-5953.

URL     [本文引用: 4]

Hsieh S M, Liu M C, Chen Y H, et al.

Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan

The Lancet Respiratory Medicine, 2021, 9(12): 1396-1406.

URL     [本文引用: 2]

Keech C, Albert G, Cho I, et al.

Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine

The New England Journal of Medicine, 2020, 383(24): 2320-2332.

URL     [本文引用: 1]

Novavax. The registered clinical trials of Nuvaxovid. [2022-04-18]. https://covid19.trackvaccines.org/vaccines/25/.

URL     [本文引用: 2]

Serum Institute of India. The registered clinical trials of COVOVAX (Novavax formulation). [2022-04-18]. https://covid19.trackvaccines.org/vaccines/123/.

URL     [本文引用: 1]

Thuluva S, Paradkar V, Turaga K, et al.

Selection of optimum formulation of RBD-based protein sub-unit COVID-19 vaccine (Corbevax) based on safety and immunogenicity in an open-label, randomized phase-1 and 2 clinical studies

medRxiv, 2022. DOI: 10.1101/2022.03.08.22271822.

[本文引用: 2]

Zhao X, Zheng A Q, Li D D, et al.

Neutralization of recombinant RBD-subunit vaccine ZF2001-elicited antisera to SARS-CoV-2 variants including Delta

bioRxiv, 2021. DOI: 10.1101/2021.07.15.452504.

[本文引用: 2]

Kaabi N A, Yang Y K, Du L F, et al.

Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients: a randomized controlled phase 2 trial

medRxiv, 2022. DOI: 10.1101/2022.03.08.22272062.

[本文引用: 2]

Valdes-Balbin Y, Santana-Mederos D, Quintero L, et al.

SARS-CoV-2 RBD-tetanus toxoid conjugate vaccine induces a strong neutralizing immunity in preclinical studies

ACS Chemical Biology, 2021, 16(7): 1223-1233.

PMID:34219448      [本文引用: 3]

Controlling the global COVID-19 pandemic depends, among other measures, on developing preventive vaccines at an unprecedented pace. Vaccines approved for use and those in development intend to elicit neutralizing antibodies to block viral sites binding to the host's cellular receptors. Virus infection is mediated by the spike glycoprotein trimer on the virion surface via its receptor binding domain (RBD). Antibody response to this domain is an important outcome of immunization and correlates well with viral neutralization. Here, we show that macromolecular constructs with recombinant RBD conjugated to tetanus toxoid (TT) induce a potent immune response in laboratory animals. Some advantages of immunization with RBD-TT conjugates include a predominant IgG immune response due to affinity maturation and long-term specific B-memory cells. These result demonstrate the potential of the conjugate COVID-19 vaccine candidates and enable their advance to clinical evaluation under the name SOBERANA02, paving the way for other antiviral conjugate vaccines.

Liu H, Su D, Zhang J, et al.

Improvement of pharmacokinetic profile of TRAIL via trimer-tag enhances its antitumor activity in vivo

Scientific Reports, 2017, 7: 8953.

URL     [本文引用: 1]

Liang J G, Su D, Song T Z, et al.

S-Trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates

Nature Communications, 2021, 12: 1346.

URL     [本文引用: 2]

Chappell K J, Mordant F L, Li Z Y, et al.

Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial

The Lancet Infectious Diseases, 2021, 21(10): 1383-1394.

URL     [本文引用: 1]

Liu Y, Zhang N, Wang B, et al.

Broad and long-lasting immune response against SARS-CoV-2 Omicron and other variants by PIKA-adjuvanted recombinant SARS-CoV-2 spike (S) protein subunit vaccine (YS-SC2-010)

bioRxiv, 2021. DOI: 10.1101/2021.12.22.473615.

[本文引用: 2]

Tong J, Zhu C X, Lai H Y, et al.

Potent neutralization antibodies induced by a recombinant trimeric spike protein vaccine candidate containing PIKA adjuvant for COVID-19

Vaccines, 2021, 9(3): 296.

URL     [本文引用: 2]

Heath P T, Galiza E P, Baxter D N, et al.

Safety and efficacy of NVX-CoV 2373 COVID-19 vaccine

The New England Journal of Medicine, 2021, 385(13): 1172-1183.

PMID:34192426      [本文引用: 1]

Early clinical data from studies of the NVX-CoV2373 vaccine (Novavax), a recombinant nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that contains the full-length spike glycoprotein of the prototype strain plus Matrix-M adjuvant, showed that the vaccine was safe and associated with a robust immune response in healthy adult participants. Additional data were needed regarding the efficacy, immunogenicity, and safety of this vaccine in a larger population.In this phase 3, randomized, observer-blinded, placebo-controlled trial conducted at 33 sites in the United Kingdom, we assigned adults between the ages of 18 and 84 years in a 1:1 ratio to receive two intramuscular 5-μg doses of NVX-CoV2373 or placebo administered 21 days apart. The primary efficacy end point was virologically confirmed mild, moderate, or severe SARS-CoV-2 infection with an onset at least 7 days after the second injection in participants who were serologically negative at baseline.A total of 15,187 participants underwent randomization, and 14,039 were included in the per-protocol efficacy population. Of the participants, 27.9% were 65 years of age or older, and 44.6% had coexisting illnesses. Infections were reported in 10 participants in the vaccine group and in 96 in the placebo group, with a symptom onset of at least 7 days after the second injection, for a vaccine efficacy of 89.7% (95% confidence interval [CI], 80.2 to 94.6). No hospitalizations or deaths were reported among the 10 cases in the vaccine group. Five cases of severe infection were reported, all of which were in the placebo group. A post hoc analysis showed an efficacy of 86.3% (95% CI, 71.3 to 93.5) against the B.1.1.7 (or alpha) variant and 96.4% (95% CI, 73.8 to 99.5) against non-B.1.1.7 variants. Reactogenicity was generally mild and transient. The incidence of serious adverse events was low and similar in the two groups.A two-dose regimen of the NVX-CoV2373 vaccine administered to adult participants conferred 89.7% protection against SARS-CoV-2 infection and showed high efficacy against the B.1.1.7 variant. (Funded by Novavax; EudraCT number, 2020-004123-16.).Copyright © 2021 Massachusetts Medical Society.

Shinde V, Bhikha S, Hoosain Z, et al.

Efficacy of NVX-CoV 2373 COVID-19 vaccine against the B.1.351 variant

The New England Journal of Medicine, 2021, 384(20): 1899-1909.

PMID:33951374      [本文引用: 1]

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens progress toward control of the coronavirus disease 2019 (Covid-19) pandemic. In a phase 1-2 trial involving healthy adults, the NVX-CoV2373 nanoparticle vaccine had an acceptable safety profile and was associated with strong neutralizing-antibody and antigen-specific polyfunctional CD4+ T-cell responses. Evaluation of vaccine efficacy was needed in a setting of ongoing SARS-CoV-2 transmission.In this phase 2a-b trial in South Africa, we randomly assigned human immunodeficiency virus (HIV)-negative adults between the ages of 18 and 84 years or medically stable HIV-positive participants between the ages of 18 and 64 years in a 1:1 ratio to receive two doses of either the NVX-CoV2373 vaccine (5 μg of recombinant spike protein with 50 μg of Matrix-M1 adjuvant) or placebo. The primary end points were safety and vaccine efficacy against laboratory-confirmed symptomatic Covid-19 at 7 days or more after the second dose among participants without previous SARS-CoV-2 infection.Of 6324 participants who underwent screening, 4387 received at least one injection of vaccine or placebo. Approximately 30% of the participants were seropositive for SARS-CoV-2 at baseline. Among 2684 baseline seronegative participants (94% HIV-negative and 6% HIV-positive), predominantly mild-to-moderate Covid-19 developed in 15 participants in the vaccine group and in 29 in the placebo group (vaccine efficacy, 49.4%; 95% confidence interval [CI], 6.1 to 72.8). Vaccine efficacy among HIV-negative participants was 60.1% (95% CI, 19.9 to 80.1). Of 41 sequenced isolates, 38 (92.7%) were the B.1.351 variant. Post hoc vaccine efficacy against B.1.351 was 51.0% (95% CI, -0.6 to 76.2) among the HIV-negative participants. Preliminary local and systemic reactogenicity events were more common in the vaccine group; serious adverse events were rare in both groups.The NVX-CoV2373 vaccine was efficacious in preventing Covid-19, with higher vaccine efficacy observed among HIV-negative participants. Most infections were caused by the B.1.351 variant. (Funded by Novavax and the Bill and Melinda Gates Foundation; ClinicalTrials.gov number, NCT04533399.).Copyright © 2021 Massachusetts Medical Society.

Dunkle L M, Kotloff K L, Gay C L, et al.

Efficacy and safety of NVX-CoV 2373 in adults in the United States and Mexico

The New England Journal of Medicine, 2022, 386(6): 531-543.

URL     [本文引用: 1]

Powell A E, Zhang K M, Sanyal M, et al.

A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice

ACS Central Science, 2021, 7(1): 183-199.

URL     [本文引用: 2]

Kanekiyo M, Wei C J, Yassine H M, et al.

Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies

Nature, 2013, 499 (7456): 102-106.

URL     [本文引用: 1]

Yassine H M, Boyington J C, McTamney P M, et al.

Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection

Nature Medicine, 2015, 21 (9): 1065-1070.

PMID:26301691      [本文引用: 1]

The antibody response to influenza is primarily focused on the head region of the hemagglutinin (HA) glycoprotein, which in turn undergoes antigenic drift, thus necessitating annual updates of influenza vaccines. In contrast, the immunogenically subdominant stem region of HA is highly conserved and recognized by antibodies capable of binding multiple HA subtypes. Here we report the structure-based development of an H1 HA stem-only immunogen that confers heterosubtypic protection in mice and ferrets. Six iterative cycles of structure-based design (Gen1-Gen6) yielded successive H1 HA stabilized-stem (HA-SS) immunogens that lack the immunodominant head domain. Antigenic characterization, determination of two HA-SS crystal structures in complex with stem-specific monoclonal antibodies and cryo-electron microscopy analysis of HA-SS on ferritin nanoparticles (H1-SS-np) confirmed the preservation of key structural elements. Vaccination of mice and ferrets with H1-SS-np elicited broadly cross-reactive antibodies that completely protected mice and partially protected ferrets against lethal heterosubtypic H5N1 influenza virus challenge despite the absence of detectable H5N1 neutralizing activity in vitro. Passive transfer of immunoglobulin from H1-SS-np-immunized mice to naive mice conferred protection against H5N1 challenge, indicating that vaccine-elicited HA stem-specific antibodies can protect against diverse group 1 influenza strains.

李志鹏, 刘庆友, 石德顺.

铁蛋白纳米颗粒应用于生物医疗领域的研究进展

生物技术通报, 2015, 31(10): 38-47.

[本文引用: 1]

在漫长的进化过程中, 生物系统中出现了多种多样的纳米粒子。其中铁蛋白纳米粒子广泛存在于所有生物体内, 是参与生命活动的重要功能蛋白。近年来, 铁蛋白自组装纳米粒子特殊的理化性质使其在生物医学领域应用中呈现出巨大的优势和应用前景。铁蛋白纳米笼的应用主要包括微量血清铁蛋白的临床检查、作为营养物质补充机体铁需求、纳米生物材料平台和纳米材料的生物呈递等。综述了铁蛋白纳米粒子在疾病诊断与治疗以及药物呈递与疫苗开发上的应用, 并对铁蛋白纳米粒子在生物医学领域的应用前景进行展望。

Li Z P, Liu Q Y, Shi D S.

Research progress on application of ferritin nanoparticles in the field of biomedicine

Biotechnology Bulletin, 2015, 31(10): 38-47.

[本文引用: 1]

在漫长的进化过程中, 生物系统中出现了多种多样的纳米粒子。其中铁蛋白纳米粒子广泛存在于所有生物体内, 是参与生命活动的重要功能蛋白。近年来, 铁蛋白自组装纳米粒子特殊的理化性质使其在生物医学领域应用中呈现出巨大的优势和应用前景。铁蛋白纳米笼的应用主要包括微量血清铁蛋白的临床检查、作为营养物质补充机体铁需求、纳米生物材料平台和纳米材料的生物呈递等。综述了铁蛋白纳米粒子在疾病诊断与治疗以及药物呈递与疫苗开发上的应用, 并对铁蛋白纳米粒子在生物医学领域的应用前景进行展望。

Joyce M G, Chen W H, Sankhala R S, et al.

SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity

Cell Reports, 2021, 37(12): 110143.

URL     [本文引用: 1]

Joyce M G, King H A D, Naouar I E, et al.

Efficacy of a broadly neutralizing SARS-CoV-2 ferritin nanoparticle vaccine in nonhuman Primates

bioRxiv, 2021. DOI: 10.1101/2021.03.24.436523.

[本文引用: 1]

Carmen J M, Shrivastava S, Lu Z, et al.

SARS-CoV-2 ferritin nanoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses

NPJ Vaccines, 2021, 6(1): 151.

URL     [本文引用: 2]

Vaxine. COVAX-19® vaccine project of Vaxine. [2022-04-18].https://vaxine.net/projects/.

URL     [本文引用: 1]

University of Saskatchewan. A clinical trial of COVAC-2 in adults. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05209009.

URL     [本文引用: 2]

Hospital do Coracao. Evaluation of safety and immunogenicity of a novel vaccine for prevention of COVID-19 in adults previously immunized. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05016934.

URL     [本文引用: 2]

Renn A, Fu Y, Hu X, et al.

Fruitful neutralizing antibody pipeline brings hope to defeat SARS-CoV-2

Trends in Pharmacological Sciences, 2020, 41(11): 815-829.

URL     [本文引用: 1]

Pollet J, Chen W H, Versteeg L, et al.

SARS-CoV-2 RBD219-N1C1: a yeast-expressed SARS-CoV-2 recombinant receptor-binding domain candidate vaccine stimulates virus neutralizing antibodies and T-cell immunity in mice

Human Vaccines & Immunotherapeutics, 2021, 17(8): 2356-2366.

[本文引用: 1]

Center for Genetic Engineering and Biotechnology. Phase III clinical study of Abdala. [2022-04-18]. https://www.cigb.edu.cu/en/product/abdala-cigb-66-2/.

URL     [本文引用: 2]

Meng F Y, Gao F, Jia S Y, et al.

Safety and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older: two single-center, randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials

Signal Transduction and Targeted Therapy, 2021, 6: 271.

URL     [本文引用: 2]

Yang J, Wang W, Chen Z, et al.

A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity

Nature, 2020, 586 (7830): 572-577.

URL     [本文引用: 2]

Huang B Y, Dai L P, Wang H, et al.

eutralization of SARS-CoV-2 VOC 501Y.V2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines

bioRxiv, 2021. DOI: 10.1101/2021.02.01.429069.

[本文引用: 1]

Guirakhoo F, Kuo L, Peng J, et al.

A novel SARS-CoV-2 multitope protein/peptide vaccine candidate is highly immunogenic and prevents lung infection in an adeno associated virus human angiotensin-converting enzyme 2 (AAV hACE2) mouse model

bioRxiv, 2020. DOI: 10.1101/2020.11.30.399154.

[本文引用: 2]

University Medical Center Groningen. Combinatorial phase I/II safety, tolerability and immunogenicity single center open-label clinical study of AKS-452 COVID-19 vaccination study. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT04681092.

URL     [本文引用: 2]

Baiya Phytopharm. A study to evaluate safety, tolerability, and reactogenicity of an RBD-Fc-based vaccine to prevent COVID-19. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT04953078.

URL     [本文引用: 2]

Yu J P, Yao W R, Hu Y S, et al.

A trimeric NTD and RBD SARS-CoV-2 subunit vaccine induced protective immunity in CAG-hACE 2 transgenic mice and rhesus macaques

bioRxiv, 2021. DOI: 10.1101/2021.11.03.467182.

[本文引用: 2]

Maharjan P M, Choe S.

Plant-based COVID-19 vaccines: current status, design, and development strategies of candidate vaccines

Vaccines, 2021, 9(9): 992.

URL     [本文引用: 1]

Huang W C, Zhou S Q, He X D, et al.

SARS-CoV-2 RBD neutralizing antibody induction is enhanced by particulate vaccination

Advanced Materials, 2020, 32(50): 2005637.

URL     [本文引用: 2]

Zheng N Y, Xia R, Yang C P, et al.

Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice

Vaccine, 2009, 27(36): 5001-5007.

URL     [本文引用: 1]

Interfax. EpiVacCorona vaccine to be efficacious against Omicron variant. [2022-04-18]. https://interfax.com/newsroom/top-stories/73354/.

URL     [本文引用: 1]

Heitmann J S, Bilich T, Tandler C, et al.

A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity

Nature, 2022, 601 (7894): 617-622.

URL     [本文引用: 2]

Cao Y, Hao X, Wang X, et al.

Humoral immunogenicity and reactogenicity of CoronaVac or ZF2001 booster after two doses of inactivated vaccine

Cell Research, 2022, 32 (1): 107-109.

URL     [本文引用: 1]

Ai J, Zhang H, Zhang Q, et al.

Recombinant protein subunit vaccine booster following two-dose inactivated vaccines dramatically enhanced anti-RBD responses and neutralizing titers against SARS-CoV-2 and variants of concern

Cell Research, 2022, 32 (1): 103-106.

URL     [本文引用: 1]

Novavax. Evaluation of the safety and immunogenicity of SII Vaccine constructs based on the SARS-CoV-2 (COVID-19) variant in adults. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05029856.

URL     [本文引用: 5]

Sanofi. Sanofi and GSK announce positive preliminary booster data for their COVID-19 vaccine candidate and continuation of phase 3 trial per independent monitoring board recommendation. [2022-04-18]. https://www.sanofi.com/en/media-room/press-releases/2021/2021-12-15-07-30-00-2352255.

URL     [本文引用: 2]

Clover Biopharmaceuticals. Immunogenicity and safety of adjuvanted SCB-2020S vaccines in adults. [2022-04-18]. https://www.clinicaltrials.gov/ct2/show/NCT04950751.

URL     [本文引用: 2]

Barreiro A, Prenafeta A, Bech-Sabat G, et al.

Preclinical efficacy, safety, and immunogenicity of PHH-1V, a second-generation COVID-19 vaccine candidate based on a novel recombinant RBD fusion heterodimer of SARS-CoV-2

bioRxiv, 2021. DOI: 10.1101/2021.11.22.469117.

[本文引用: 2]

Saville J W, Mannar D, Zhu X, et al.

Structural and biochemical rationale for enhanced spike protein fitness in delta and kappa SARS-CoV-2 variants

Nature Communications, 2022, 13(1): 742.

PMID:35136050      [本文引用: 1]

The Delta and Kappa variants of SARS-CoV-2 co-emerged in India in late 2020, with the Delta variant underlying the resurgence of COVID-19, even in countries with high vaccination rates. In this study, we assess structural and biochemical aspects of viral fitness for these two variants using cryo-electron microscopy (cryo-EM), ACE2-binding and antibody neutralization analyses. Both variants demonstrate escape of antibodies targeting the N-terminal domain, an important immune hotspot for neutralizing epitopes. Compared to wild-type and Kappa lineages, Delta variant spike proteins show modest increase in ACE2 affinity, likely due to enhanced electrostatic complementarity at the RBD-ACE2 interface, which we characterize by cryo-EM. Unexpectedly, Kappa variant spike trimers form a structural head-to-head dimer-of-trimers assembly, which we demonstrate is a result of the E484Q mutation and with unknown biological implications. The combination of increased antibody escape and enhanced ACE2 binding provides an explanation, in part, for the rapid global dominance of the Delta variant.© 2022. The Author(s).

National Taiwan University Hospital. A heterologous prime-boost study to evaluate immunogenicity and safety of mRNA-1273 with MVC-COV1901 in adults. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05079633.

URL     [本文引用: 1]

Yisheng Biopharma. To evaluate the safety, tolerability, and immunogenicity of a PIKA-adjuvanted recombinant SARS-CoV-2 spike (S) protein subunit vaccine in healthy individuals. [2022-04-18]. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382358&isReview=true.

URL     [本文引用: 1]

CinnaGen Company. A phase III, randomized, two-armed, double-blind, placebo controlled trial to evaluate efficacy and safety of an adjuvanted recombinant SARS-CoV-2 spike (S) protein subunit vaccine (Spikogen® produced by CinnaGen Co. [2022-04-18]. https://en.irct.ir/trial/57559.

URL     [本文引用: 1]

Novavax. A study to evaluate the efficacy, immune response, and safety of a COVID-19 vaccine in adults ≥ 18 years with a pediatric expansion in adolescents (12 to ≥ 18 years) at risk for SARS-CoV-2. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT04611802.

URL     [本文引用: 1]

Center for Genetic Engineering and Biotechnology. Phase III, multicenter, randomized, double-blind, placebo-controlled clinical trial for the evaluation in adults of the efficacy, safety and immunogenicity of the vaccine candidate CIGB-66 against SARS-CoV-2. [2022-04-18]. https://rpcec.sld.cu/trials/RPCEC00000359-En.

URL     [本文引用: 1]

Biological E Limited. A prospective, single-blind, randomized, active-controlled phase III clinical study to evaluate the immunogenicity and safety of Biological E’s Corbevax vaccine for protection against COVID-19 disease when administered to RT-PCR negative adult subjects. [2022-04-18]. http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=59772.

URL     [本文引用: 1]

National Vaccine and Serum Institute, China. Clinical trial on sequential immunization of recombinant COVID-19 vaccine (CHO cells, NVSI-06-08) and inactivated COVID-19 vaccine (Vero cells) in population aged 18 years and above. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05069129.

URL     [本文引用: 1]

Finlay Vaccine Institute. Phase III clinical trial, multicenter, adaptive, parallel-group, randomized, placebo-controlled, double-blind study to evaluate the efficacy, safety and immunogenicity of vaccination against SARS-CoV-2 with 2 doses of FINLAY-FR-2 and a heterologous scheme with 2 doses of FINLAY-FR-2 and a booster dose with FINLAY-FR-1A (COVID-19). [2022-04-18]. http://rpcec.sld.cu/en/trials/RPCEC00000354-En.

URL     [本文引用: 1]

Kentucky BioProcessing. KBP-201 COVID-19 vaccine trial in healthy volunteers. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT04473690.

URL     [本文引用: 1]

/