Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 59-68    DOI: 10.13523/j.cb.2307036
    
Anti-IL-5 Nanobody Screening and Activity Detection
LI Shijie1,DAI Weiyan2,WANG Xuelian2,LIU Chang2,LIANG Yaoji2,BAI Zhonghu1,**(),CHEN Yongqi2,**()
1 National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
2 Zhuhai Resproly Pharmaceutical Technology Co., Ltd, Zhuhai 519040, China
Download: HTML   PDF(1429KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Interleukin-5 (IL-5), a homodimeric cytokine, is an important regulator of eosinophil (EOS) proliferation, activation and maturation. Anti-IL-5 monoclonal antibodies block the binding of IL-5 to the IL-5 receptor subunit alpha (IL-5Rα) and have been used successfully in the treatment of eosinophilic asthma. Currently available monoclonal antibody drugs require repeated administration by injection, which has a significant impact on patient compliance, and the systemic exposure rate of injection is high. To obtain nanobodies suitable for inhalation administration, monoclonal clones were selected through three rounds of panning in the natural alpaca library by phage ELISA screening. A total of 461 positive clones were obtained, of which 50 clone sequences were unique, and 30 molecules were selected for recombinant expression and purification of nanobodies. The in vitro activity of the candidate antibodies was tested by ELISA binding, ELISA blocking, FACS blocking and TF-1 proliferation inhibition assays, and a nanobody AIL-A96-Fc with the ability to block the binding of IL-5 and IL-5Rα was successfully obtained. ELISA binding assays with human and cynomolgus IL-5 showed that the molecule has good human-cynomolgus cross-species activity, and AIL-A96-Fc showed good blocking effects in FACS and ELISA blocking assays. This study not only provides a candidate nanobody (AIL-A96-Fc), but the development methodology also provides guidance for the subsequent development of additional candidate nanobodies targeting IL-5.



Key wordsInterleukin-5      Nanobodies      Blocking activity      Phage display      Asthma     
Received: 27 July 2023      Published: 03 April 2024
ZTFLH:  Q511  
Cite this article:

LI Shijie, DAI Weiyan, WANG Xuelian, LIU Chang, LIANG Yaoji, BAI Zhonghu, CHEN Yongqi. Anti-IL-5 Nanobody Screening and Activity Detection. China Biotechnology, 2024, 44(2/3): 59-68.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2307036     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/59

编号 筛选抗原 抗原浓度 负筛 噬菌体加入 噬菌体加入的
滴度/cfu
筛选后洗脱的
滴度/cfu
空白
/cfu
筛选后洗脱
的滴度
/噬菌体加入
的滴度
筛选后洗
脱的滴度
/空白
1-1 IL-5-His 100 μg/mL N/A 羊驼天然库 2.20×1013 1.40×108 N/A 0.01 N/A
1-2 IL-5-His-bio 300 nmol/L N/A 羊驼天然库 3.30×1013 3.60×108 N/A 0.01 N/A
2-1 IL-5-His 30 μg/mL N/A 1-1 1.80×1012 1.00×107 1.12×107 0.01 0.89
2-2 IL-5-His-bio 100 nmol/L N/A 1-1 9.00×1011 4.20×106 4.80×107 0 0.09
2-3 IL-5-Fc 30 μg/mL BCMA-Fc 1-1 1.20×1012 3.20×107 1.12×107 0.03 2.86
2-4 IL-5-Fc-bio 100 nmol/L BCMA-Fc 1-1 5.00×1011 4.80×106 4.80×107 0.01 0.1
2-5 IL-5-His 30 μg/mL N/A 1-2 1.40×1012 6.40×106 1.12×107 0 0.57
2-6 IL-5-His-bio 100 nmol/L N/A 1-2 6.50×1011 1.80×107 4.80×107 0.03 0.38
2-7 IL-5-Fc-bio 100 nmol/L BCMA-Fc 1-2 6.00×1011 2.10×107 4.80×107 0.04 0.44
2-8 IL-5-Fc 30 μg/mL BCMA-Fc 1-2 1.00×1012 1.12×107 1.12×107 0.01 1
3-1 IL-5-His 10 μg/mL N/A 2-1 4.60×1011 2.40×106 6.00×106 0.01 0.4
3-2 IL-5-His 10 μg/mL N/A 2-2 2.40×1011 3.20×106 6.00×106 0.01 0.53
3-3 IL-5-His 10 μg/mL N/A 2-3 3.60×1011 5.20×106 6.00×106 0.01 0.87
3-4 IL-5-His 10 μg/mL N/A 2-4 5.00×1011 8.00×106 6.00×106 0.02 1.33
3-5 IL-5-His-bio 30 nmol/L N/A 2-5 2.40×1011 4.40×107 9.20×108 0.18 0.05
3-6 IL-5-His-bio 30 nmol/L N/A 2-6 1.70×1011 8.00×108 9.20×108 4.71 0.87
3-7 IL-5-His-bio 30 nmol/L N/A 2-7 1.15×1011 1.72×108 9.20×108 1.5 0.19
3-8 IL-5-His-bio 30 nmol/L N/A 2-8 1.35×1011 5.60×107 9.20×108 0.41 0.06
Table 1 Screening data from an alpaca natural phage display library
Fig.1 Human IL-5 binding assay for recombinant nanobodies Molar concentration (nmol/L) was calculated by the website(https://www.selleck.cn/molaritycalculator.jsp)
样品名称 EC50 样品名称 EC50 样品名称 EC50 样品名称 EC50
Mepolizumab 0.482 5 Mepolizumab 0.431 6 Mepolizumab 0.511 Mepolizumab 0.449 8
Reslizumab 0.396 4 Reslizumab 0.384 5 Reslizumab 0.264 4 Reslizumab 0.305 7
AIL-A3-Fc 16.9 AIL-A30-Fc N/A AIL-A75-Fc N/A AIL-A188-Fc 14.5
AIL-A103-Fc N/A AIL-A303-Fc 约1 778 AIL-A76-Fc 0.808 8 AIL-A19-Fc N/A
AIL-A107-Fc N/A AIL-A318-Fc N/A AIL-A86-Fc N/A AIL-A191-Fc N/A
AIL-A1-Fc 10.76 AIL-A38-Fc N/A AIL-A96-Fc 0.940 9 AIL-A2-Fc 13.21
AIL-A12-Fc 0.101 8 AIL-A39-Fc N/A AIL-B108-Fc N/A AIL-A23-Fc 0.959 8
AIL-A14-Fc 0.248 1 AIL-A4-Fc N/A AIL-B124-Fc 4.92 AIL-A233-Fc 117.8
AIL-A163-Fc N/A AIL-A5-Fc N/A AIL-B127-Fc 0.243 6
AIL-A178-Fc 23.84 AIL-A6-Fc N/A AIL-B90-Fc 0.623 5
Table 2 EC50 of the binding assay of the recombinant nanobodies to human IL-5
Fig.2 Cynomolgus IL-5 binding assay for recombinant nanobodies
样品名称 EC50 样品名称 EC50 样品名称 EC50 样品名称 EC50
Mepolizumab 0.565 3 Mepolizumab 0.484 9 Mepolizumab 0.460 6 Mepolizumab 0.613 3
Reslizumab 0.378 6 Reslizumab 0.195 8 Reslizumab 0.304 6 Reslizumab 0.273 5
AIL-A3-Fc 25.2 AIL-A30-Fc N/A AIL-A75-Fc N/A AIL-A188-Fc 18.26
AIL-A103-Fc N/A AIL-A303-Fc 约431.6 AIL-A76-Fc 0.575 1 AIL-A19-Fc 144.3
AIL-A107-Fc N/A AIL-A318-Fc N/A AIL-A86-Fc N/A AIL-A191-Fc N/A
AIL-A1-Fc 16.16 AIL-A38-Fc N/A AIL-A96-Fc 0.654 4 AIL-A2-Fc 24.6
AIL-A12-Fc 0.089 39 AIL-A39-Fc N/A AIL-B108-Fc N/A AIL-A23-Fc 0.515 4
AIL-A14-Fc 0.391 7 AIL-A4-Fc N/A AIL-B124-Fc 2.7 AIL-A233-Fc 约152 7
AIL-A163-Fc N/A AIL-A5-Fc N/A AIL-B127-Fc 0.090 9
AIL-A178-Fc 15.28 AIL-A6-Fc N/A AIL-B90-Fc 0.868 4
Table 3 EC50 of the binding assay of the recombinant nanobodies to cynomolgus IL-5
Fig.3 ELISA blocking assay of recombinant nanobodies
Fig.4 FACS blocking assay of AIL-A96-Fc
Fig.5 Cell proliferation inhibition assay of AIL-A96-Fc
[1]   Perkins T N, Oczypok E A, Dutz R E, et al. The receptor for advanced glycation end products is a critical mediator of type 2 cytokine signaling in the lungs. Journal of Allergy and Clinical Immunology, 2019, 144(3): 796-808.e12.
doi: 10.1016/j.jaci.2019.03.019
[2]   Drick N, Milger K, Seeliger B, et al. Switch from IL-5 to IL-5-receptor α antibody treatment in severe eosinophilic asthma. Journal of Asthma and Allergy, 2020, 13: 605-614.
doi: 10.2147/JAA.S270298 pmid: 33204117
[3]   Zhu M J, Yang J, Chen Y F. Efficacy and safety of treatment with benralizumab for eosinophilic asthma. International Immunopharmacology, 2022, 111: 109131.
doi: 10.1016/j.intimp.2022.109131
[4]   Busse W W, Viswanathan R. What has been learned by cytokine targeting of asthma? Journal of Allergy and Clinical Immunology, 2022, 150(2): 235-249.
doi: 10.1016/j.jaci.2022.06.010
[5]   Clutterbuck E J, Hirst E M, Sanderson C J. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood, 1989, 73(6): 1504-1512.
pmid: 2653458
[6]   Pelaia C, Paoletti G, Puggioni F, et al. Interleukin-5 in the pathophysiology of severe asthma. Frontiers in Physiology, 2019, 10: 1514.
doi: 10.3389/fphys.2019.01514 pmid: 31920718
[7]   Yang Z L, Li C, Song Y L, et al. Inhalable antibodies for the treatment of COVID-19. Innovation [Cambridge (Mass)], 2022, 3(6): 100328.
[8]   Lai S K, McSweeney M D, Pickles R J. Learning from past failures: challenges with monoclonal antibody therapies for COVID-19. Journal of Controlled Release, 2021, 329: 87-95.
doi: 10.1016/j.jconrel.2020.11.057 pmid: 33276017
[9]   Bianco F, Salomone F, Milesi I, et al. Aerosol drug delivery to spontaneously-breathing preterm neonates: lessons learned. Respiratory Research, 2021, 22(1): 71.
[10]   Li C, Zhan W Q, Yang Z L, et al. Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell, 2022, 185(8): 1389-1401.e18.
doi: 10.1016/j.cell.2022.03.009 pmid: 35344711
[11]   Nambulli S, Xiang Y F, Tilston-Lunel N L, et al. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7(22): eabh0319.
[12]   Hoey R J, Eom H, Horn J R. Structure and development of single domain antibodies as modules for therapeutics and diagnostics. Experimental Biology and Medicine, 2019, 244(17): 1568-1576.
doi: 10.1177/1535370219881129
[13]   Franco E J, Sonneson G J, DeLegge T J, et al. Production and characterization of a genetically engineered anti-caffeine camelid antibody and its use in immunoaffinity chromatography. Journal of Chromatography B, 2010, 878(2): 177-186.
doi: 10.1016/j.jchromb.2009.06.017 pmid: 19560409
[14]   Goldman E R, Liu J L, Zabetakis D, et al. Enhancing stability of camelid and shark single domain antibodies: an overview. Frontiers in Immunology, 2017, 8: 865.
doi: 10.3389/fimmu.2017.00865 pmid: 28791022
[15]   谢秋玲, 罗美华, 雷云, 等. VEGF纳米抗体的筛选、表达及特异性检测. 华南理工大学学报, 2020, 48(9):141-147.
[15]   Xie Q L, Luo M H, Lei Y, et al. Screening, expression and specificity detection of anti-VEGF nanobodies. Journal of South China University of Technology, 2020, 48(9):141-147.
[16]   蔺士新, 刘东晨, 雷云, 等. TNF-α纳米抗体的筛选、表达及特异性检测. 中国生物工程杂志, 2020, 40(7): 15-21.
[16]   Lin S X, Liu D C, Lei Y, et al. Screening, expression and specificity detection of anti-TNF-α nanobody. China Biotechnology, 2020, 40(7): 15-21.
[17]   Revier M D, Geng B. Mepolizumab prefilled syringe for the treatment of severe eosinophilic asthma: focus on the pediatric population. Expert Review of Respiratory Medicine, 2022, 16(8): 857-865.
doi: 10.1080/17476348.2022.2109465
[18]   Hashimoto S, Kroes J A, Eger K A, et al. Real-world effectiveness of reslizumab in patients with severe eosinophilic asthma-first initiators and switchers. The Journal of Allergy and Clinical Immunology: in Practice, 2022, 10(8): 2099-2108.e6.
doi: 10.1016/j.jaip.2022.04.014
[19]   Enríquez-Rodríguez A I, Hermida Valverde T, Romero Álvarez P, et al. Results in clinical practice in the treatment of severe eosinophilic asthma with mepolizumab: a real-life study. The Journal of Asthma, 2022, 59(5): 1005-1011.
doi: 10.1080/02770903.2021.1897835
[20]   García-Moguel I, Rosado A, Gómez-Cardeñosa A, et al. Reliability, satisfaction and effectiveness of benralizumab home self-administration in patients with severe eosinophilic asthma in real-world practice: the auto-benra study. Journal of Asthma and Allergy, 2022, 15: 623-632.
doi: 10.2147/JAA.S358738 pmid: 35592384
[21]   Barbarot N, Nourry E, Massart N, et al. Treating acute severe eosinophilic asthma with IL-5 inhibitors in ICU. Case Reports in Pulmonology, 2022, 2022: 2180795.
[22]   Patino E, Kotzsch A, Saremba S, et al. Structure analysis of the IL-5 ligand-receptor complex reveals a wrench-like architecture for IL-5Rα. Structure, 2011, 19(12): 1864-1875.
doi: 10.1016/j.str.2011.08.015 pmid: 22153509
[23]   Van Heeke G, Allosery K, De Brabandere V, et al. Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacology & Therapeutics, 2017, 169: 47-56.
[1] WANG Xinting, HU Qianqian, LOU Chu, YANG Tianning, LI Jiangwei. Screening and Identification of Anti-CEA Nanobody and Construction of a Double-nanobody ELISA for CEA Detection[J]. China Biotechnology, 2024, 44(2/3): 48-58.
[2] BAO Yi-kai,HONG Hao-fei,SHI Jie,ZHOU Zhi-fang,WU Zhi-meng. Development and Biological Activity Analysis of PSMA Specific Mutivalent Nanobodies[J]. China Biotechnology, 2022, 42(5): 37-45.
[3] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[4] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[5] Jin-jing LI,Fei XU,Yan-wei JI,Mei SHU,Zhui TU,Jin-heng FU. Biopanning of Anti c-Myc-tag Nanobodies and Its Application for Bioimaging[J]. China Biotechnology, 2018, 38(2): 61-67.
[6] PANG Qian,CHEN Jing,WANG Xiao-hong,WANG Jia. Screening of Anti-Aflatoxin B1 ScFv Based on Phage Display Technology and Analysis of Its Protein Structure[J]. China Biotechnology, 2018, 38(12): 41-48.
[7] FANG Yuan,XU Guang-xian,WANG Xian,WANG Hong-xia,PAN Jun-fei. Construction of Camelid Natural Nanobody Phage Display Library and Screening for Anti-GDH Nanobody[J]. China Biotechnology, 2018, 38(12): 49-56.
[8] Qiao-li LANG,Lin YU,Qi-lin HE,Liang-peng GE,Xi YANG. Construction and Screening of a Phage Display Library of Single Chain Fv Antibody Efficiently from Mouse Immunized with Ovalbumin[J]. China Biotechnology, 2018, 38(11): 25-31.
[9] HU Chang-wu, XIE Jun, ZHU Nai-shuo. Comparison of the Inhibitory Efficiency of M13 Based 7-mer and 12-mer Phage Display Libraries Derived Peptides as Tumor Necrosis Factor Alpha Antagonist[J]. China Biotechnology, 2017, 37(5): 1-8.
[10] ZHANG Yin-chuan, LIU Meng-meng, ZHANG Ya-ting, GUI Fang, ZHANG Ai-hua, BI Lan, PAN Yong-bin. Construction and Screening of Recombinant Cell Line Expressing Fully-human mAbs against Human IgE[J]. China Biotechnology, 2015, 35(3): 66-74.
[11] DAI Yun-jian, ZHANG Yong-xia, HE Yong-zhi, CONG Cong, WANG Ming-rong, ZHANG Tao. The Research on Purification Technology and Activity Identification of Anti-IgE scFv Fragment[J]. China Biotechnology, 2015, 35(12): 51-57.
[12] LI You-jian, ZHANG guo-qi, Gou ji-xing, CHEN xin-kai, DOU Xiao-xia, CHEN Chuang-fu, SHENG Jin-liang. Expression of Ovine Myostatin Gene and Construction and Identification of Nanobody Library Against Recombinant MSTN[J]. China Biotechnology, 2014, 34(9): 87-93.
[13] YUAN Li, DAI He-ping. Overview of Scaffold Protein Used for Selection of Artificial Binding Proteins[J]. China Biotechnology, 2013, 33(1): 95-103.
[14] WANG Zi-ye, FENG Juan, MA Xue-mei, WANG Ming-lian, ZHONG Ru-gang. Screening of HIV-1 p24 Binding Peptides from Phage Display Peptide Library[J]. China Biotechnology, 2011, 31(5): 104-107.
[15] . Screening of HIV-1 p24 Binding Peptides from Phage Display Peptide Library[J]. China Biotechnology, 2011, 31(05): 0-0.