Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (6): 1-11    DOI: 10.13523/j.cb.2302030
    
Anti-tumor Effect of CAR-NK Cells Targeting Prostate Cancer
SU Ling-yu1,ZOU Jin-tao1,NIU An-na1,ZHANG Wei2,ZHANG Xiao-peng1,**(),CHEN Wei1,**()
1 Academy of Military Medical Sciences, Beijing 100071,China
2 Nanhu Laboratory,Jiaxing 314001,China
Download: HTML   PDF(5522KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the anti-tumor efficacy of chimeric antigen receptor-nature killing cells (CAR-NK cells) against prostate stem cell antigen (PSCA) via DAP12 co-stimulation signal. Methods: CAR-NK cells were generated via lentiviral transfection and the expression of CAR in NK cells was evaluated using flow cytometry. The anti-tumor activity of CAR-NK cells was further assessed in both cellular and animal models. Results: The prostate cancer cell DU145 expressed PSCA with a positive rate of about 98.50%. Flow cytometry revealed that (64.07 ± 3.01)% of CAR-NK cells were positive. Furthermore, the killing rate of CAR-NK cells was approximately 1.5 times higher than that of control NK cells. ELISA tests showed that CAR-NK cells released significantly higher levels of TNF-α, IFN-γ, CD107α, Granzyme B, and Perforin-1, when compared to control NK cells in the process of killing DU145 cells. Additionally, animal experiments show that CAR-NK cells had a better inhibiting effect in the growth of DU145 tumor cells in mice compared with control NK cells as significant difference was found between the two groups (P<0.000 1). Conclusion: The findings suggested that PSCA-targeting CAR-NK cells with DAP12 had a greater anti-prostate tumor effect, providing a potential cellular therapeutic option for the treatment of prostate cancer.



Key wordsCAR-NK      PSCA      DAP12      Prostate cancer     
Received: 17 February 2023      Published: 04 July 2023
ZTFLH:  Q819  
Cite this article:

SU Ling-yu, ZOU Jin-tao, NIU An-na, ZHANG Wei, ZHANG Xiao-peng, CHEN Wei. Anti-tumor Effect of CAR-NK Cells Targeting Prostate Cancer. China Biotechnology, 2023, 43(6): 1-11.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2302030     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I6/1

Fig.1 Design and construction of CAR plasmid based on DAP12 signal domain (a) Schematic diagram of PSCA-CAR structure (b) Agarose gel electrophoresis analysis of CAR fragment (c) Agarose gel electrophoresis analysis of CAR plasmid (d) Sanger sequencing result
Fig.2 Titers of lentivirus detected by flow cytometry (a) Fluorescence microscopy images of 293T cells packaging lentivirus (b) Histogram of flow cytometry results (c) The GFP expression of 293T cells detected by flow cytometry
Fig.3 The CAR expression of NK cells detected by flow cytometry (a) Negative control (b) Control-NK cells (c) CAR-NK cells (d) Histogram of flow cytometry results
Fig. 4 PSCA expression of DU145 cells detected by flow cytometry (a) A549 cells (b) DU145 cells (c) Histogram of flow cytometry results
Fig.5 Killing activity of CAR-NK cells against DU145 cells (a)-(c) Lysis rate evaluated by RTCA assay. (a) Cell index; (b) Lysis rate continuously monitored (c),(d) Lysis rate at 4 h (c) and 8 h (d) (e) Lysis rate determined by LDH assay(E:T=10:1) (f) Lysis rate measured by luciferase assay
Fig.6 Concentration of cytokines determined by ELISA (a) IFN-γ (b) CD107α (c) TNF-α (d) Perforin-1 (e) Granzyme B
Fig.7 Evaluation of tumor burden in mice (a) Tumor burden detected by bioluminescence assay (b) Line chart of bioluminescence imaging results (c) Line chart of tumor volume detected by vernier caliper (d) Images of tumor samples from sacrificed mice (e) Scatter diagram of tumor weight
Fig.8 Infiltration of CAR-NK and NK cells into DU145 tumors detected by flow cytometry (a) Negative control (b) NK cells (c) CAR-NK cells (d) Histogram of flow cytometry results (n=5)
[1]   Baxevanis C N, Perez S A, Papamichail M. Cancer immunotherapy. Critical Reviews in Clinical Laboratory Sciences, 2009, 46(4): 167-189.
doi: 10.1080/10408360902937809 pmid: 19650714
[2]   Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(24): 10024-10028.
[3]   Barrett D M, Singh N, Porter D L, et al. Chimeric antigen receptor therapy for cancer. Annual Review of Medicine, 2014, 65: 333-347.
doi: 10.1146/annurev-med-060512-150254 pmid: 24274181
[4]   Anagnostou T, Riaz I B, Hashmi S K, et al. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis. The Lancet Haematology, 2020, 7(11): e816-e826.
doi: 10.1016/S2352-3026(20)30277-5
[5]   Fesnak A D, June C H, Levine B L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nature Reviews Cancer, 2016, 16(9): 566-581.
doi: 10.1038/nrc.2016.97 pmid: 27550819
[6]   Guillerey C, Huntington N D, Smyth M J. Targeting natural killer cells in cancer immunotherapy. Nature Immunology, 2016, 17(9): 1025-1036.
doi: 10.1038/ni.3518 pmid: 27540992
[7]   Morvan M G, Lanier L L. NK cells and cancer: you can teach innate cells new tricks. Nature Reviews Cancer, 2016, 16(1): 7-19.
doi: 10.1038/nrc.2015.5 pmid: 26694935
[8]   Rezvani K, Rouce R, Liu E L, et al. Engineering natural killer cells for cancer immunotherapy. Molecular Therapy, 2017, 25(8): 1769-1781.
doi: S1525-0016(17)30274-5 pmid: 28668320
[9]   Xia J F, Minamino S, Kuwabara K. CAR-expressing NK cells for cancer therapy: a new hope. BioScience Trends, 2020, 14(5): 354-359.
doi: 10.5582/bst.2020.03308
[10]   Wang W X, Jiang J T, Wu C P. CAR-NK for tumor immunotherapy: clinical transformation and future prospects. Cancer Letters, 2020, 472: 175-180.
doi: S0304-3835(19)30588-9 pmid: 31790761
[11]   Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(2): 720-724.
[12]   Maher J, Brentjens R J, Gunset G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nature Biotechnology, 2002, 20(1): 70-75.
doi: 10.1038/nbt0102-70 pmid: 11753365
[13]   Morgan R A, Yang J C, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy, 2010, 18(4): 843-851.
[14]   Lanier L L. DAP10- and DAP12-associated receptors in innate immunity. Immunological Reviews, 2009, 227(1): 150-160.
doi: 10.1111/j.1600-065X.2008.00720.x pmid: 19120482
[15]   Tomasello E, Vivier E. KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. European Journal of Immunology, 2005, 35(6): 1670-1677.
pmid: 15884055
[16]   Turnbull I R, Colonna M. Activating and inhibitory functions of DAP12. Nature Reviews Immunology, 2007, 7(2): 155-161.
doi: 10.1038/nri2014 pmid: 17220916
[17]   Tessarz A S, Cerwenka A. The TREM-1/DAP12 pathway. Immunology Letters, 2008, 116(2): 111-116.
doi: 10.1016/j.imlet.2007.11.021 pmid: 18192027
[18]   Paradowska-Gorycka A, Jurkowska M. Structure, expression pattern and biological activity of molecular complex TREM-2/DAP12. Human Immunology, 2013, 74(6): 730-737.
doi: 10.1016/j.humimm.2013.02.003 pmid: 23459077
[19]   Xia C F, Dong X S, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chinese Medical Journal, 2022, 135(5): 584-590.
doi: 10.1097/CM9.0000000000002108 pmid: 35143424
[20]   Xiao L, Cen D Z, Gan H N, et al. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Molecular Therapy, 2019, 27(6): 1114-1125.
doi: S1525-0016(19)30097-8 pmid: 30962163
[21]   ChiaIng J, Huang S W, Peter C, et al. Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. Journal for Immunotherapy of Cancer, 2021, 9(10): e003050.
doi: 10.1136/jitc-2021-003050
[22]   Töpfer K, Cartellieri M, Michen S, et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. The Journal of Immunology, 2015, 194(7): 3201-3212.
doi: 10.4049/jimmunol.1400330
[23]   Abate-Daga D, Lagisetty K H, Tran E, et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Human Gene Therapy, 2014, 25(12): 1003-1012.
doi: 10.1089/hum.2013.209 pmid: 24694017
[24]   Yang X L, Guo Z, Liu Y, et al. Prostate stem cell antigen and cancer risk, mechanisms and therapeutic implications. Expert Review of Anticancer Therapy, 2014, 14(1): 31-37.
doi: 10.1586/14737140.2014.845372 pmid: 24308679
[25]   de la Luz Garcia-Hernandez M, Gray A, Hubby B, et al. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Research, 2008, 68(3): 861-869.
doi: 10.1158/0008-5472.CAN-07-0445 pmid: 18245488
[26]   Wu D, Lv J, Zhao R, et al. PSCA is a target of chimeric antigen receptor T cells in gastric cancer. Biomarker Research, 2020, 8: 1-11.
doi: 10.1186/s40364-019-0180-0
[27]   Montagner I M, Penna A, Fracasso G, et al. Anti-PSMA CAR-engineered NK-92 cells: an off-the-shelf cell therapy for prostate cancer. Cells, 2020, 9(6): 1382.
doi: 10.3390/cells9061382
[28]   Teng K Y, Mansour A G, Zhu Z, et al. Off-the-shelf prostate stem cell antigen-directed chimeric antigen receptor natural killer cell therapy to treat pancreatic cancer. Gastroenterology, 2022, 162(4): 1319-1333.
doi: 10.1053/j.gastro.2021.12.281
[29]   Zhao A, Chen F H, Ning C H, et al. Use of real-time cellular analysis and Plackett-Burman design to develop the serum-free media for PC-3 prostate cancer cells. PLoS One, 2017, 12(9): e0185470.
doi: 10.1371/journal.pone.0185470
[30]   Stefanowicz-Hajduk J, Adamska A, Bartoszewski R, et al. Reuse of E-plate cell sensor arrays in the xCELLigence real-time cell analyzer. BioTechniques, 2016, 61(3): 117-122.
doi: 10.2144/000114450 pmid: 27625205
[1] BAO Yi-kai,HONG Hao-fei,SHI Jie,ZHOU Zhi-fang,WU Zhi-meng. Development and Biological Activity Analysis of PSMA Specific Mutivalent Nanobodies[J]. China Biotechnology, 2022, 42(5): 37-45.
[2] ZHANG Sai,YE Ji-wei,SHEN Yuan-jing,MU Ke-fei,GUO Xin-wu. Effects of miR-324-3p Targeting GPX4 on Ferroptosis in Prostate Cancer Cells[J]. China Biotechnology, 2022, 42(1/2): 72-79.
[3] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.
[4] SHENG Bin, YANG Fan, SUN Xin-yi, CHEN Yao, LI Li, YANG Jian-yi, DU Sheng-jia, LIU Ming. Construction of the Stable Prostate Cancer Cell Lines Overexpress GPRC6A and EMT Study[J]. China Biotechnology, 2017, 37(3): 18-26.
[5] CHEN Er, OU Li-ping, TANG Min, LIU Nan-jing, WU Xiao-hou, LUO Chun-li. The Mechanisms of Panobinostat Reversing HepaCAM Gene Expression in Prostate Cancer[J]. China Biotechnology, 2016, 36(6): 9-17.
[6] DONG Lei, ZHANG Xiao-peng, YI Shao-qiong, MAO Ya-li, YU Ting, HOU Li-hua, FU Ling, YU Chang-ming, CHEN Wei. In vivo Bioluminescence Imaging of Luc Labeled Human PSCA-expressed Tumor in Mouse Model[J]. China Biotechnology, 2011, 31(02): 1-6.