Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 64-74    DOI: 10.13523/j.cb.2209066
    
Analysis of Differentially Expressed Proteins in the Cervical Spinal Cord of Guinea Pigs Subacutely Exposed to Soman
JIN Qian,SHI Meng,LIU Zhan-biao,ZHANG Yi,ZHU Si-qing,SHI Jing-jing,ZONG Xing-xing,CHEN Xue-jun*(),LI Li-qin*()
State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
Download: HTML   PDF(1890KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Proteomic technique was used to study the differentially expressed proteins in the cervical spinal cord of guinea pigs subacutely exposed to soman, to explore the main biological pathways affected by soman poisoning, and to provide important biomarkers for the diagnosis, treatment, and prognosis of soman poisoning. Methods: Soman (0.2×LD50) was subcutaneously injected into the back of male adult guinea pigs once a day for 14 consecutive days for subacute exposure. The cervical spinal cord tissue was collected after the final exposure, and the differentially expressed proteins between the soman and control group were analyzed by proteomics technology. Functional annotation and pathway enrichment analysis of differentially expressed proteins was performanced using KEGG database. The function of differential proteins in important pathways was analyzed and discussed. Results: A total of 3 563 proteins annotated by KEGG database were identified in cervical spinal cord tissues of guinea pigs. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) showed that there were 407 differentially expressed proteins after exposure to soman, of which 276 proteins were up-regulated and 131 were down-regulated. These differential proteins are mainly related to metabolism (M), genetic information processing (GIP), environmental information processing (EIP), cellular processes (CP), organismal systems (OS), and human diseases (HD). The up-regulated proteins are mainly enriched in 27 pathways (P<0.05), and the down-regulated proteins are mainly enriched in 8 pathways (P<0.05). The main enrichment pathways of up-regulated proteins include phagosome pathway, tight junction pathway, extracellular matrix (ECM)-receptor interaction pathway, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, complement and coagulation cascade pathway, which are related to up regulation of 24 protein expressions. Conclusion: Based on proteomics research, it was clarified that a large number of differentially expressed proteins appeared in the cervical spinal cord of guinea pigs subacutely exposed to soman, and the six main pathways were helpful to further elucidate the non-cholinergic mechanism of subacute injury. The differential expressed proteins could provide important biomarkers for the diagnosis, treatment, and prognosis of poisoning, as well as important theoretical basis for the development of new antitoxic drugs.



Key wordsSoman      Proteomics      KEGG pathway analysis      Biological functions      Differential protein     
Received: 26 September 2022      Published: 31 March 2023
ZTFLH:  Q816  
Corresponding Authors: *Xue-jun CHEN,Li-qin LI     E-mail: chenxuejun86@sina.com;llq969696@163.com
Cite this article:

JIN Qian, SHI Meng, LIU Zhan-biao, ZHANG Yi, ZHU Si-qing, SHI Jing-jing, ZONG Xing-xing, CHEN Xue-jun, LI Li-qin. Analysis of Differentially Expressed Proteins in the Cervical Spinal Cord of Guinea Pigs Subacutely Exposed to Soman. China Biotechnology, 2023, 43(2/3): 64-74.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209066     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/64

Fig.1 DIA quantitative proteomics detection and analysis process
Fig.2 Venn diagram comparison of proteins between soman exposure and control group
Fig.3 PCA analysis about protein profiles of soman exposure group and control group
Fig.4 Quantities of up-regulated (red) and down-regulated (blue) proteins after soman exposure
Fig.5 KEGG pathway enrichment analysis of up-regulated protein in the cervical spinal cord of guinea pigs exposed to soman
蛋白质编号 蛋白质名称 变化幅度 基因名称 亚细胞定位 分子质量 /kDa
H0V3I8 α微管蛋白 1.429 TUBA4A 细胞质 49.9
A0A286XHV1 SEC61 1.235 SEC61A1 内质网 52.2
P01862 免疫球蛋白γ2 1.512 IGH 细胞质 36.1
H0VDM6 整合素β 1.341 ITGB1 细胞外 88.3
A0A286XZ85 β微管蛋白 1.212 TUBB2B 细胞质 49.9
A0A286XDY8 β微管蛋白 1.669 TUBB 细胞质 49.6
A0A286XLW8 Ig样结构域蛋白 3.144 MHC1 溶酶体 46.8
Table 1 Differentially expressed protein information of the phagosome pathway
蛋白质编号 蛋白质名称 变化幅度 基因名称 亚细胞定位 分子质量/kDa
H0W331 Cingulin 1.309 CGNL1 细胞质 142.9
H0V3I8 α微管蛋白 1.429 TUBA 细胞质 49.9
A0A286XCN1 Claudin 1.242 CLDN 细胞膜 22.0
A0A286XG11 神经纤维蛋白2 1.469 NF2 细胞质 69.1
H0VDM6 整合素β 1.341 ITGB1 细胞质 88.3
H0UTQ3 肌球蛋白重链9 1.562 MYH9 细胞质 226.6
Table 2 Differentially expressed protein information of the tight junction pathway
蛋白质编号 蛋白质名称 变化幅度 基因名称 亚细胞定位 分子质量 /kDa
A0A286X8W2 层粘连蛋白β1 1.260 LAMB1 细胞外 197.4
H0VFV6 层粘连蛋白β2 1.413 LAMB2 细胞外 196.9
H0VQL4 层粘连蛋白α2 1.969 LAMA2 细胞膜 341.9
A0A286XKP1 整合素α2 1.436 ITGA6 细胞质 128.4
H0VDM6 整合素β 1.341 ITGB1 细胞外 88.3
H0W6G2 硫酸乙酰肝素蛋白聚糖 2.445 HSPG2 细胞膜 456.5
A0A286XB48 重组人纤连蛋白 2.036 FN1 细胞膜 252.9
H0V077 玻连蛋白 1.553 VTN 内质网 54.9
A0A286XZP1 VI型胶原α3 10.581 COL6A3 细胞质 270
Table 3 Differentially expressed protein information of the ECM-receptor interaction pathway
蛋白质编号 蛋白质名称 变化幅度 基因名称 亚细胞定位 分子质量/kDa
A0A286X8W2 层粘连蛋白β1 1.260 LAMB1 细胞外 197.4
H0VFV6 层粘连蛋白β2 1.413 LAMB2 细胞外 196.9
H0VQL4 层粘连蛋白α2 1.969 LAMA2 细胞膜 341.9
A0A286XKP1 整合素α2 1.436 ITGA6 细胞质 128.4
H0VDM6 整合素β 1.341 ITGB1 细胞外 88.3
P01862 免疫球蛋白γ2 1.512 IGH 细胞质 36.1
A0A286XB48 重组人纤连蛋白 2.036 FN1 细胞膜 252.9
H0V077 玻连蛋白 1.553 VTN 内质网 54.9
A0A286XZP1 VI型胶原α3 10.581 COL6A3 细胞质 270
H0VZM6 丝氨酸/苏氨酸蛋白磷酸酶 1.245 PPP2R5 细胞质 57.3
H0UT18 受体酪氨酸激酶 1.268 EGFR 细胞膜 134.6
Table 4 Differentially expressed protein information of the PI3K-Akt signaling pathway
蛋白质编号 蛋白质名称 变化幅度 基因名称 亚细胞定位 分子质量/kDa
H0UT18 受体酪氨酸激酶 1.268 EGFR 细胞膜 134.6
H0W8R6 胶质纤维酸性蛋白 1.201 GFAP 线粒体 49.5
H0VXN9 信号转导和转录激活因子 1.739 Stat5b 细胞核 89.6
Table 5 Differentially expressed protein information of the JAK-STAT signaling pathway
蛋白质编号 蛋白质名称 变化幅度 基因名称 亚细胞定位 分子质量/kDa
Q60486 α2-巨球蛋白 1.416 A2M 细胞外 163.5
H0V077 玻连蛋白 1.553 VTN 内质网 54.9
Table 6 Differentially expressed protein information of the complement and coagulation cascades pathway
[1]   Watson A, Bakshi K, Opresko D, et al. Cholinesterase inhibitors as chemical warfare agents. Toxicology of Organophosphate & Carbamate Compounds. Amsterdam: Elsevier, 2006: 47-68.
[2]   敬海明, 李静, 李国君. 蛋白质组学技术在神经毒理学研究中的应用. 毒理学杂志, 2011, 25(2): 141-145.
[2]   Jing H M, Li J, Li G J. Application of protein omics technology in neurotoxicology research. Journal of Toxicology, 2011, 25(2): 141-145.
[3]   李习艺, 庄志雄. 蛋白质组学技术及其在毒理学应用的研究进展. 毒理学杂志, 2005, 19(4): 316-319.
[3]   Li X Y, Zhuang Z X. Research progress of protein omics technology and its application in toxicology. Journal of Health Toxicology, 2005, 19(4): 316-319.
[4]   Singh N, Golime R, Acharya J, et al. Quantitative proteomic changes after organophosphorous nerve agent exposure in the rat Hippocampus. ACS Chemical Neuroscience, 2020, 11(17): 2638-2648.
doi: 10.1021/acschemneuro.0c00311
[5]   Meade M L, Hoffmann A, Makley M K, et al. Quantitative proteomic analysis of the brainstem following lethal sarin exposure. Brain Research, 2015, 1611: 101-113.
doi: 10.1016/j.brainres.2015.03.041 pmid: 25842371
[6]   Nirujogi R S, Wright J D Jr, Manda S S, et al. Phosphoproteomic analysis reveals compensatory effects in the piriform cortex of VX nerve agent exposed rats. Proteomics, 2015, 15(2-3): 487-499.
doi: 10.1002/pmic.201400371 pmid: 25403869
[7]   李云, 周晓辰, 宁广智. 颈脊髓损伤患者睡眠质量影响因素的质性研究. 中华现代护理杂志, 2018, 24(4): 436-439.
[7]   Li Y, Zhou X C, Ning G Z. Influencing factors of sleep quality in patients with cervical spinal cord injury: a qualitative study. Chinese Journal of Modern Nursing, 2018, 24(4): 436-439.
[8]   Lloyd D J, Wheeler M C, Gekakis N. A point mutation in Sec61alpha1 leads to diabetes and hepatosteatosis in mice. Diabetes, 2010, 59(2): 460-470.
doi: 10.2337/db08-1362 pmid: 19934005
[9]   Song W, Raden D, Mandon E C, et al. Role of Sec61alpha in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell, 2000, 100(3): 333-343.
doi: 10.1016/s0092-8674(00)80669-8 pmid: 10676815
[10]   梁建英, 杜元平, 张昌艳, 等. 肺结核患者血清中PCT、CRP、IgG抗PPD-IgG和白细胞计数的临床诊断意义. 标记免疫分析与临床, 2018, 25(7): 997-1000, 1004.
doi: 10.11748/bjmy.issn.1006-1703.2018.07.019
[10]   Liang J Y, Du Y P, Zhang C Y, et al. The significance of levels of PCT, CRP, anti-TB IgG and leukocyte count in the diagnosis of pulmonary tuberculosis. Labeled Immunoassays and Clinical Medicine, 2018, 25(7): 997-1000, 1004.
doi: 10.11748/bjmy.issn.1006-1703.2018.07.019
[11]   Zheng X L, Zhang Y Y, Lv W G. Long noncoding RNA ITGB1 promotes migration and invasion of clear cell renal cell carcinoma by downregulating Mcl-1. European Review for Medical and Pharmacological Sciences, 2019, 23(5): 1996-2002.
doi: 17238 pmid: 30915742
[12]   Pecci A, Ma X F, Savoia A, et al. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene, 2018, 664: 152-167.
doi: S0378-1119(18)30416-5 pmid: 29679756
[13]   舒崇湘. 细胞外基质的结构与功能. 西南国防医药, 2001, 11(2): 142-145.
[13]   Shu C X. Structure and function of extracellular matrix. Medicial Journal of National Defending Forces in Southwest China, 2001, 11(2): 142-145.
[14]   侯洋. P15蛋白促进骨形成及其作用机制的实验研究. 上海: 第二军医大学, 2013.
[14]   Hou Y. A study of the P15Peptide and its mechanism on the enhancement of bone formation. Shanghai: Second Military Medical University, 2013.
[15]   刘杰. CD9/ADAM17调节表皮细胞迁移的作用与机制研究. 重庆: 中国人民解放军陆军军医大学, 2019.
[15]   Liu J. The effects and mechanisms of keratinocyte migration regulated by CD9/ADAM17. Chongqing: Army Medical University, 2019.
[16]   邱宏, 丁侃. 硫酸乙酰肝素蛋白聚糖的功能机制研究进展. 生命科学, 2011, 23(7): 648-661.
[16]   Qiu H, Ding K. Progress in function and mechanism study of heparan sulf ate proteoglycan. Chinese Bulletin of Life Sciences, 2011, 23(7): 648-661.
[17]   任建勋, 张卫萍, 刘建勋. 玻连蛋白与动脉粥样硬化关系的研究进展. 中国心血管杂志, 2008, 13(1): 66-68.
[17]   Ren J X, Zhang W P, Liu J X. Research progress on the relationship between vitronectin and atherosclerosis. Chinese Journal of Cardiovascular Medicine, 2008, 13(1): 66-68.
[18]   Koh S H, Lo E H. The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. Journal of Clinical Neurology (Seoul, Korea), 2015, 11(4): 297-304.
doi: 10.3988/jcn.2015.11.4.297
[19]   陈国栋, 郑美妍, 张鹏, 等. 脊神经后根切断大鼠脊髓后角神经元和星形胶质细胞变化及白细胞介素1β和胶质纤维酸性蛋白的表达. 中国组织工程研究, 2023, 27(5): 726-731.
[19]   Chen G D, Zheng M Y, Zhang P, et al. Changes in sensory neurons and astrocytes and the expression of interleukin lbeta and glial fibrillary acidic protein in the rat spinal cord after selective dorsal rhizotomy. Chinese Journal of Tissue Engineering Research, 2023, 27(5): 726-731.
[20]   胡坤, 冉斌, 赵桥, 等. JAK-STAT信号通路抑制剂在脊髓损伤后的作用机制. 西部医学, 2021, 33(8): 1106-1110.
[20]   Hu K, Ran B, Zhao Q, et al. Mechanisms of JAK-STAT signaling pathway inhibitors after spinal cord injury. Medical Journal of West China, 2021, 33(8): 1106-1110.
[21]   覃璐, 杨轶轩, 晏宁, 等. 应用iTRAQ技术筛选儿童皮质发育障碍性癫痫差异表达蛋白. 第三军医大学学报, 2015, 37(14): 1400-1405.
[21]   Qin L, Yang Y X, Yan N, et al. Application of iTRAQ in screening differentially expressed proteins in children with cortical dysplasia-induced epilepsy. Journal of Third Military Medical University, 2015, 37(14): 1400-1405.
[22]   Cvirn G, Gallistl S, Koestenberger M, et al. Alpha 2-macroglobulin enhances prothrombin activation and thrombin potential by inhibiting the anticoagulant protein C/protein S system in cord and adult plasma. Thrombosis Research, 2002, 105(5): 433-439.
pmid: 12062545
[23]   Tenner A J, Stevens B, Woodruff T M. New tricks for an ancient system: physiological and pathological roles of complement in the CNS. Molecular Immunology, 2018, 102: 3-13.
doi: S0161-5890(18)30466-8 pmid: 29958698
[24]   Perkins M W, Pierre Z, Rezk P, et al. Acute respiratory toxicity following inhalation exposure to soman in Guinea pigs. Toxicology and Applied Pharmacology, 2010, 245(2): 171-178.
doi: 10.1016/j.taap.2010.02.016 pmid: 20206646
[25]   Lõfvenmark I, Norrbrink C, Nilsson-Wikmar L, et al. Traumatic spinal cord injury in Botswana: characteristics, aetiology and mortality. Spinal Cord, 2015, 53(2): 150-154.
doi: 10.1038/sc.2014.203 pmid: 25420494
[26]   Aittomäki S, Pesu M. Therapeutic targeting of the Jak/STAT pathway. Basic & Clinical Pharmacology & Toxicology, 2014, 114(1): 18-23.
[27]   Popovich P G, Wei P, Stokes B T. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. The Journal of Comparative Neurology, 1997, 377(3): 443-464.
doi: 10.1002/(ISSN)1096-9861
[28]   崔敏, 贺学农, 周昌龙, 等. 大鼠脊髓损伤后紧密连接蛋白claudin-5的表达. 中国神经精神疾病杂志, 2014, 40(2): 79-82.
[28]   Cui M, He X N, Zhou C L, et al. The expression of tight junction protein claudin-5 after spinal cord injury about rats. Chinese Journal of Nervous and Mental Diseases, 2014, 40(2): 79-82.
[29]   崔云华. 细胞外基质与细胞周期调控. 国外医学(分子生物学分册), 2002, 24(1): 47-49.
[29]   Cui Y H. Extracellular matrix and cell cycle regulation. Journal of Medical Molecular Biology, 2002, 24(1): 47-49.
[30]   宗委峰, 喻志源, 骆翔. 脊髓胶质瘢痕的研究进展. 神经损伤与功能重建, 2021, 16(11): 649-652.
[30]   Zong W F, Yu Z Y, Luo X. Research progress of glial scar of spinal cord. Neural Injury and Functional Reconstruction, 2021, 16(11): 649-652.
[31]   Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin: N-cadherin pathway after spinal cord injury. Nature Medicine, 2017, 23(7): 818-828.
doi: 10.1038/nm.4354
[32]   Ding Z F, Dai C, Zhong L, et al. Neuregulin-1 converts reactive astrocytes toward oligodendrocyte lineage cells via upregulating the PI3K-AKT-mTOR pathway to repair spinal cord injury. Biomedicine & Pharmacotherapy, 2021, 134: 111168.
doi: 10.1016/j.biopha.2020.111168
[33]   Liu B, Chen H Y, Johns T G, et al. Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2006, 26(28): 7532-7540.
doi: 10.1523/JNEUROSCI.1004-06.2006
[34]   王选康, 胡学昱, 王哲. 星形胶质细胞在脊髓损伤中作用的研究进展. 中国脊柱脊髓杂志, 2020, 30(8): 751-757.
[34]   Wang X K, Hu X Y, Wang Z. Research progress on the role of astrocytes in spinal cord injury. Chinese Journal of Spine and Spinal Cord, 2020, 30(8): 751-757.
[35]   Owen K L, Brockwell N K, Parker B S. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers, 2019, 11(12): 2002.
doi: 10.3390/cancers11122002
[36]   Lu P, Graham L, Wang Y Z, et al. Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury. Journal of Visualized Experiments: JoVE, 2014(89): e50641.
[37]   刘敬贤, 夏永智, 王富贵, 等. IL-1β通过JAK2-STAT3促进大鼠脊髓损伤后胶质瘢痕形成. 基础医学与临床, 2017, 37(5): 668-675.
[37]   Liu J X, Xia Y Z, Wang F G, et al. IL-1β promotes glial scar formation after spinal cord injury in rats by JAK2-STAT3. Basic & Clinical Medicine, 2017, 37(5): 668-675.
[38]   龚元晋, 王岩松. 补体系统在脊髓损伤中作用的研究进展. 中国脊柱脊髓杂志, 2022, 32(3): 274-279.
[38]   Gong Y J, Wang Y S. Research progress of complement system in spinal cord injury. Chinese Journal of Spine and Spinal Cord, 2022, 32(3): 274-279.
[1] ZHANG Xin, ZHANG Rui, TANG Jing-feng. Functional Studies of AMOT Family Members and Their Potential Applications in Cancer Therapy[J]. China Biotechnology, 2023, 43(2/3): 104-119.
[2] HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian. Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants[J]. China Biotechnology, 2022, 42(4): 85-92.
[3] CHEN Juan, YANG Hui-lin, HUANG Yun-hong, LONG Zhong-er. Screening of the Protein Related to Antibiotics Biosynthesis in Micromonospora carbonacea JXNU-1[J]. China Biotechnology, 2016, 36(7): 55-63.
[4] LV Shan-shan, HOU Yun-hua, YAN Meng-jie, ZHONG Yao-hua. Recent Progress in Mutagenesis Strategies and High-yielding Mechanism for Enzyme Production in Industrial Fungi[J]. China Biotechnology, 2016, 36(3): 111-119.
[5] FENG Tian-xiang, WANG Ling, CHEN Hai-min, SHENG Qing, ZUO Rui, XIE Wen-jie. Research Advances on Function and Bioactive Substances of Endophytic actinomycetes[J]. China Biotechnology, 2015, 35(4): 98-106.
[6] ZHANG Yuan-yuan, HU Qi-meng, WANG Liang-liang, LI Xin-hong. Resent Advances on Phosphoproteomics Researches of Mammalian Sperm Capacitation[J]. China Biotechnology, 2012, 32(04): 76-82.
[7] YU Zhi-liang, ZHOU Ning, QIAO Hua. Advances in L-amino Acid Oxidase[J]. China Biotechnology, 2012, 32(03): 125-135.
[8] TIAN Xiao-mei, REN Jian-hong, FANG Cong. Proteomic Analysis of Pichia pastoris GS115 Cultured in Different Carbon Source Mediums[J]. China Biotechnology, 2012, 32(01): 21-29.
[9] GE Wei-feng, CHU Xiao-he, WANG Yong-hong, ZHANG Si-liang. Optimization of Protease Inhibitor Mixture for Protein Extraction from Cells in Proteomics Study of Streptomyces avermitilis[J]. China Biotechnology, 2010, 30(12): 66-71.
[10] JIN Liang, CHEN Shang-wu, MA Hui-qin. Advances in Grape Proteomics[J]. China Biotechnology, 2010, 30(10): 100-107.
[11] . Advances in Grape Proteomics[J]. China Biotechnology, 2010, 30(10): 0-0.
[12] . Proteomics Analysis of heteromorphic leaves of Populus euphratica Oliv[J]. China Biotechnology, 2009, 29(09): 0-0.
[13] HAN Wei-Dong-1, 2, WANG Dong-1, HAO Hai-Sheng-1, DIAO Hua-Meng-1, DU Wei-Hua-1, SHU Hua-Ban-1. Application of Proteomics in the Sperm Protein Research[J]. China Biotechnology, 2009, 29(06): 120-124.
[14] MO Cheng- Hu-Yang- Li-Yan-Ping- Ji-Hong-Fei. Establishment of Two-dimensional Electrophoresis System for Proteome of Monascus ruber[J]. China Biotechnology, 2009, 29(04): 83-87.
[15] Long CHEN hua-bin ZHU Zong-li WANG . Establishment of proteomics methods of bovine spermatozoa and initial analysis of the differential proteins between the fresh and frozen-thawed spermatozoa[J]. China Biotechnology, 2008, 28(7): 37-42.