Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 104-119    DOI: 10.13523/j.cb.2209072
    
Functional Studies of AMOT Family Members and Their Potential Applications in Cancer Therapy
ZHANG Xin1,2,3,4,ZHANG Rui1,2,3,4,**(),TANG Jing-feng1,2,3,4,**()
1 National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
2 Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
3 Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
4 Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
Download: HTML   PDF(2422KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Angiomotin(AMOT) is a type of angiogenesis inhibitor binding protein. Members of the AMOT family (AMOTs) are involved in various critical biological processes, for example, cell proliferation, cell migration, angiogenesis, and virus release. AMOTs expressed in most cancer and regulate cancer development and progression. Available evidence suggests that AMOTs act as both tumor promoters and tumor suppressors, and this opposite regulation in cancer still needs to be validated. This review focuses on the structure, expression localization, and function of AMOTs, and additionally, it systematically summarizes previous research and therapeutic roles in cancer. It discusses the possibility and challenges of treating cancer through AMOTs.



Key wordsAngiomotin family      Biological functions      Cancer      Therapeutic target     
Received: 27 September 2022      Published: 31 March 2023
ZTFLH:  Q819  
Corresponding Authors: **Rui ZHANG,Jing-feng TANG     E-mail: zhangrui1987@hbut.edu.cn;tangjingfeng@hbut.edu.com
Cite this article:

ZHANG Xin, ZHANG Rui, TANG Jing-feng. Functional Studies of AMOT Family Members and Their Potential Applications in Cancer Therapy. China Biotechnology, 2023, 43(2/3): 104-119.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209072     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/104

Fig.1 Schematic diagram of the domains of each member of the AMOT protein family
Fig.2 mRNA expression levels of each member of the AMOT protein family in different human tissues (The results are from The Human Protein Atlas database)
AMOT家族 相互作用蛋白 结构域或基序 可能的功能 参考文献
AMOT YAP1/TAZ/AIP4 L/PPxY基序 调节细胞增殖和癌症发展 [40,54]
14-3-3 RSLSERLMQ 胞质滞留 [55]
LATS1/2 HVRSLS 磷酸化、刺激LATS激酶自磷酸化 [34,52]
Merlin/RICK Colied-coil结构域 调节细胞迁移和细胞连接 [54]
Patj PDZ 结合基序 调节细胞迁移和细胞连接 [54]
RICH1 Colied-coil结构域 激活Hippo信号 [17]
WWOX L/PPxY基序 调节丝状病毒VP40 VLPs的排出 [56]
F-actin F-actin结合基序 调节YAP定位 [19]
KIF13B 未知 调节纤毛长度、成分和信号 [57]
NEDD4L L/PPxY基序 刺激HIV-1包膜并促进传染性 [18]
eIF4A 238~255氨基酸 限制球蛋白质合成 [58]
UCA1 Colied-coil结构域 促进YAP去磷酸化和核易位 [6]
RNF146/TNKS N-terminal结构域 调节β-catenin的稳定性;维持细胞连接处
的Crumbs复合体
[49,59]
PAR6 PDZ 结合基序 通过细胞极性变化促进细胞迁移 [2]
BMPR2/SMAD1 未知 调节BMP靶基因表达 [60]
MUPP1/PSD-95 未知 控制肌动蛋白周转和PSD完整性 [61]
Rho Colied-coil结构域 调节AMOT的分布和磷酸化 [62]
AMOT家族 相互作用蛋白 结构域或基序 可能的功能 参考文献
TFPI-1 未知 激活Hippo信号 [63]
PKCι Colied-coil结构域 磷酸化和调节核YAP定位 [36]
USP9X Colied-coil结构域 脱乙酰基化 [40]
Par/Crb PDZ结合基序 内分泌循环 [64]
sCD146 未知 促进血管生成 [65]
Cad11 Middle domain 细胞迁移 [53]
NEDD4/ITCH L/PPxY基序 泛素化 [41]
CDH1 未知 激活LATS1/2 [66]
AMOTL1 LATS1/2 HVRSLS 磷酸化 [34]
YAP1 L/PPxY基序 增加YAP稳定性 [67]
PIV5 M C-terminal结构域 调节副黏病毒出芽 [46]
NEDD4L/ NEDD4/ HECW1 L/PPxY基序 泛素化;招募副黏病毒M蛋白 [46]
USP9X Colied-coil结构域 去泛素化 [40]
RNF146/TNKS N-terminal结构域 维持细胞连接处的Crumbs复合体 [49]
N-cadherin 未知 影响血管生成 [68]
Fat4 未知 介导Fat4信号转导 [30]
AMPK Ser793 磷酸化 [37]
HECW2 L/PPxY基序 泛素化 [44]
AMOTL2 LATS1/2 HVRSLS 磷酸化 [34]
Par3 未知 调节细胞连接定位 [69]
USP9X Colied-coil结构域 去泛素化 [40]
RNF146/TNKS N-terminal结构域 维持细胞连接处的Crumbs复合体 [49]
β-catenin Colied-coil/ N-terminal 结构域 抑制Wnt/β-catenin信号 [70]
mTORC2 402~512 氨基酸 磷酸化 [38]
c-Src 未知 调节易位 [71]
WWP1 L/PPxY基序 泛素化 [42]
PPP2R2A 1~103 氨基酸 抑制JUN Thr239去磷酸化 [72]
LL5β 未知 未知 [73]
AKT 未知 抑制AKT信号 [74]
Table 1 Interacting proteins, binding domains, and corresponding functions of AMOTs
癌症类型 异构体 功能 可能分子机制 参考文献
乳腺癌 AMOT-P80 致癌基因 抑制Hippo信号 [17]
AMOT-P130 抑癌基因 抑制Wnt/β-catenin信号;调节Rho通路;抑制YAP的激活 [10,34,59]
AMOT 致癌基因 激活YAP-ERK信号通路 [115]
AMOTL1 致癌基因 激活Src [116]
AMOTL2 致癌基因 破坏顶端-基底细胞极性 [111]
弥漫性大B细胞淋巴瘤 AMOT-P130 抑癌基因 调节DNA损伤反应信号 [11]
胃癌 AMOTL1 致癌基因 增强YAP稳定性 [67]
AMOT-P130 抑癌基因 抑制上皮间质转化 [9]
肺癌 AMOT-P130 抑癌基因 抑制与SMAD2/3信号通路无关的血管生成拟态形成 [117]
AMOT 抑癌基因 稳定AMOT并抑制YAP信号;阻断致癌基因YAP/TAZ
并降低Cyr61表达
[48,118]
AMOTL2 抑癌基因 通过结合PPP2R2A抑制JUN Thr239去磷酸化 [72]
骨肉瘤 AMOT 致癌基因 未知 [112]
肝癌 AMOT-P130 致癌基因 促进YAP激活 [12]
AMOTL2 致癌基因 未知 [119]
卵巢癌 AMOT-P130 抑癌基因 抑制YAP靶基因的激活 [36]
AMOT-P130 致癌基因 促进YAP去磷酸化和核易位 [6]
前列腺癌 AMOT-P80 致癌基因 调节Cad11介导的细胞迁移;抑制Hippo信号 [53,106]
头颈部鳞状细胞癌 AMOT-P80 致癌基因 未知 [113]
肾细胞癌 AMOT 致癌基因 增加YAP相关的TEAD启动子活性 [29]
宫颈癌 AMOTL1 致癌基因 未知 [28,114]
结肠癌 AMOT 致癌基因 激活YAP-ERK/PI3K-AKT信号通路 [101]
AMOTL2 致癌基因 破坏顶端-基底细胞极性 [28]
胶质母细胞瘤 AMOTL1 致癌基因 增强YAP信号的激活 [7]
AMOTL2 抑癌基因 抑制YAP靶基因激活;调控β-catenin核定位 [38,87]
血管内皮瘤 AMOT-P80 致癌基因 促进血管生成 [113]
鼻窦内翻性乳头状瘤 AMOT 致癌基因 未知 [113]
胰腺癌 AMOTL2 致癌基因 促进血管生成 [8]
Table 2 The roles and possible regulatory mechanisms of AMOTs in different cancers
Fig.3 Schematic diagram of molecular mechanisms related to AMOT
Fig.4 Schematic diagram of molecular mechanisms related to AMOTL1 and AMOTL2
[1]   Troyanovsky B, Levchenko T, Månsson G, et al. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. The Journal of Cell Biology, 2001, 152(6): 1247-1254.
doi: 10.1083/jcb.152.6.1247
[2]   Farrell A, Alahari S, Ermini L, et al. Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia. JCI Insight, 2019, 4(8): e127009.
doi: 10.1172/jci.insight.127009
[3]   Kim S Y, Park S Y, Jang H S, et al. Yes-associated protein is required for ZO-1-mediated tight-junction integrity and cell migration in E-cadherin-restored AGS gastric cancer cells. Biomedicines, 2021, 9(9): 1264.
doi: 10.3390/biomedicines9091264
[4]   Liu G D, Zhou S F, Li X G, et al. Inhibition of hsa_circ_ 0002570 suppresses high-glucose-induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-1243/angiomotin axis. Cell Stress and Chaperones, 2020, 25(5): 767-777.
doi: 10.1007/s12192-020-01111-2
[5]   Han Z Y, Ruthel G, Dash S, et al. Angiomotin regulates budding and spread of Ebola virus. Journal of Biological Chemistry, 2020, 295(25): 8596-8601.
doi: 10.1074/jbc.AC120.013171 pmid: 32381509
[6]   Lin X Z, Spindler T J, de Souza Fonseca M A, et al. Super-enhancer-associated LncRNA UCA1 interacts directly with AMOT to activate YAP target genes in epithelial ovarian cancer. iScience, 2019, 17: 242-255.
doi: S2589-0042(19)30208-1 pmid: 31307004
[7]   Xu G, Seng Z Y, Zhang M, et al. Angiomotin-like1 plays a tumor-promoting role in glioma by enhancing the activation of YAP1 signaling. Environmental Toxicology, 2021, 36(12): 2500-2511.
doi: 10.1002/tox.v36.12
[8]   Guo Z Y, Wang X F, Yang Y H, et al. Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Molecular Therapy-Nucleic Acids, 2020, 22: 179-195.
doi: S2162-2531(20)30250-X pmid: 32942233
[9]   Qiu Y, Mao Y T, Zhu J H, et al. CLIC1 knockout inhibits invasion and migration of gastric cancer by upregulating AMOT-p130 expression. Clinical and Translational Oncology, 2021, 23(3): 514-525.
doi: 10.1007/s12094-020-02445-0
[10]   Chen Z L, Yang J, Shen Y W, et al. AmotP130 regulates Rho GTPase and decreases breast cancer cell mobility. Journal of Cellular and Molecular Medicine, 2018, 22(4): 2390-2403.
doi: 10.1111/jcmm.2018.22.issue-4
[11]   Sang T, Yang J, Liu J R, et al. AMOT suppresses tumor progression via regulating DNA damage response signaling in diffuse large B-cell lymphoma. Cancer Gene Therapy, 2021, 28(10): 1125-1135.
doi: 10.1038/s41417-020-00258-5
[12]   Liu Y, Lu Z C, Shi Y, et al. AMOT is required for YAP function in high glucose induced liver malignancy. Biochemical and Biophysical Research Communications, 2018, 495(1): 1555-1561.
doi: S0006-291X(17)32394-X pmid: 29217192
[13]   Rotem-Bamberger S, Fahoum J, Keinan-Adamsky K, et al. Structural insights into the role of the WW 2 domain on tandem WW-PPxY motif interactions of oxidoreductase WWOX. Journal of Biological Chemistry, 2022, 298(8): 102145.
doi: 10.1016/j.jbc.2022.102145
[14]   Arakaki A K S, Pan W A, Wedegaertner H, et al. α-Arrestin ARRDC3 tumor suppressor function is linked to GPCR-induced TAZ activation and breast cancer metastasis. Journal of Cell Science, 2021, 134(8): jcs254888.
doi: 10.1242/jcs.254888
[15]   Qi L, Wang M, He J L, et al. E3 ubiquitin ligase ITCH improves LPS-induced chondrocyte injury by mediating JAG1 ubiquitination in osteoarthritis. Chemico-Biological Interactions, 2022, 360: 109921.
doi: 10.1016/j.cbi.2022.109921
[16]   Liang J J, Sagum C A, Bedford M T, et al. Chaperone-mediated autophagy protein BAG 3 negatively regulates Ebola and Marburg VP40-mediated egress. PLoS Pathogens, 2017, 13(1): e1006132.
doi: 10.1371/journal.ppat.1006132
[17]   Tian Q, Gao H, Zhou Y, et al. RICH1 inhibits breast cancer stem cell traits through activating kinases cascade of Hippo signaling by competing with Merlin for binding to Amot-p80. Cell Death & Disease, 2022, 13: 71.
[18]   Rheinemann L, Thompson T, Mercenne G, et al. Interactions between AMOT PPxY motifs and NEDD4L WW domains function in HIV-1 release. Journal of Biological Chemistry, 2021, 297(2): 100975.
doi: 10.1016/j.jbc.2021.100975
[19]   Zhang C, Wang F, Xie Z Y, et al. AMOT130 linking F-actin to YAP is involved in intervertebral disc degeneration. Cell Proliferation, 2018, 51(6): e12492.
doi: 10.1111/cpr.2018.51.issue-6
[20]   Dai X M, She P L, Chi F T, et al. Phosphorylation of angiomotin by Lats1/ 2 kinases inhibits F-actin binding, cell migration, and angiogenesis. Journal of Biological Chemistry, 2013, 288(47): 34041-34051.
doi: 10.1074/jbc.M113.518019
[21]   Ernkvist M, Aase K, Ukomadu C, et al. p130-angiomotin associates to actin and controls endothelial cell shape. The FEBS Journal, 2006, 273(9): 2000-2011.
doi: 10.1111/j.1742-4658.2006.05216.x
[22]   Utterström J, Naeimipour S, Selegård R, et al. Coiled coil-based therapeutics and drug delivery systems. Advanced Drug Delivery Reviews, 2021, 170: 26-43.
doi: 10.1016/j.addr.2020.12.012 pmid: 33378707
[23]   Porebska N, Pozniak M, Krzyscik M A, et al. Dissecting biological activities of fibroblast growth factor receptors by the coiled-coil-mediated oligomerization of FGF1. International Journal of Biological Macromolecules, 2021, 180: 470-483.
doi: 10.1016/j.ijbiomac.2021.03.094 pmid: 33745974
[24]   Hall L, Donovan E, Araya M, et al. Identification of specific lysines and arginines that mediate angiomotin membrane association. ACS Omega, 2019, 4(4): 6726-6736.
doi: 10.1021/acsomega.9b00165 pmid: 31179409
[25]   Moleirinho S, Guerrant W, Kissil J L. The angiomotins-from discovery to function. FEBS Letters, 2014, 588(16): 2693-2703.
doi: 10.1016/j.febslet.2014.02.006 pmid: 24548561
[26]   Zheng Y J, Vertuani S, Nyström S, et al. Angiomotin-like protein 1 controls endothelial polarity and junction stability during sprouting angiogenesis. Circulation Research, 2009, 105(3): 260-270.
doi: 10.1161/CIRCRESAHA.109.195156 pmid: 19590046
[27]   Bratt A, Birot O, Sinha I, et al. Angiomotin regulates endothelial cell-cell junctions and cell motility. Journal of Biological Chemistry, 2005, 280(41): 34859-34869.
doi: 10.1074/jbc.M503915200 pmid: 16043488
[28]   Lv M, Shen Y W, Yang J, et al. Angiomotin family members: oncogenes or tumor suppressors? International Journal of Biological Sciences, 2017, 13(6): 772-781.
doi: 10.7150/ijbs.19603 pmid: 28656002
[29]   Lv M, Li S T, Luo C Q, et al. Angiomotin promotes renal epithelial and carcinoma cell proliferation by retaining the nuclear YAP. Oncotarget, 2016, 7(11): 12393-12403.
doi: 10.18632/oncotarget.7161 pmid: 26848622
[30]   Ragni C V, Diguet N, Le Garrec J F, et al. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nature Communications, 2017, 8: 14582.
doi: 10.1038/ncomms14582 pmid: 28239148
[31]   Kang P H, Schaffer D V, Kumar S. Angiomotin links ROCK and YAP signaling in mechanosensitive differentiation of neural stem cells. Molecular Biology of the Cell, 2020, 31(5): 386-396.
doi: 10.1091/mbc.E19-11-0602 pmid: 31940260
[32]   Matsuoka S, Ballif B A, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 2007, 316(5828): 1160-1166.
doi: 10.1126/science.1140321 pmid: 17525332
[33]   Chi Y, Welcker M, Hizli A A, et al. Identification of CDK22 substrates in human cell lysates. Genome Biology, 2008, 9(10): R149.
doi: 10.1186/gb-2008-9-10-r149
[34]   Adler J J, Johnson D E, Heller B L, et al. Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(43): 17368-17373.
[35]   Chan S W, Lim C J, Guo F S, et al. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. The Journal of Biological Chemistry, 2013, 288(52): 37296-37307.
doi: 10.1074/jbc.M113.527598
[36]   Wang Y, Justilien V, Brennan K I, et al. PKCι regulates nuclear YAP 1 localization and ovarian cancer tumorigenesis. Oncogene, 2017, 36(4): 534-545.
doi: 10.1038/onc.2016.224 pmid: 27321186
[37]   DeRan M, Yang J Y, Shen C H, et al. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Reports, 2014, 9(2): 495-503.
doi: 10.1016/j.celrep.2014.09.036 pmid: 25373897
[38]   Artinian N, Cloninger C, Holmes B, et al. Phosphorylation of the hippo pathway component AMOTL 2 by the mTORC2 kinase promotes YAP signaling, resulting in enhanced glioblastoma growth and invasiveness. Journal of Biological Chemistry, 2015, 290(32): 19387-19401.
doi: 10.1074/jbc.M115.656587
[39]   Wang Y Q, Li Z Q, Xu P F, et al. Angiomotin-like2 gene (amotl2) is required for migration and proliferation of endothelial cells during angiogenesis. Journal of Biological Chemistry, 2011, 286(47): 41095-41104.
doi: 10.1074/jbc.M111.296806 pmid: 21937427
[40]   Wigerius M, Quinn D, Fawcett J P. Emerging roles for angiomotin in the nervous system. Science Signaling, 2020, 13(655): eabc0635.
doi: 10.1126/scisignal.abc0635
[41]   Wang C J, An J, Zhang P Z, et al. The Nedd4-like ubiquitin E 3 ligases target angiomotin/p130 to ubiquitin-dependent degradation. The Biochemical Journal, 2012, 444(2): 279-289.
doi: 10.1042/BJ20111983
[42]   Hwang D, Kim M, Kim S, et al. AMOTL2 mono-ubiquitination by WWP1 promotes contact inhibition by facilitating LATS activation. Life Science Alliance, 2021, 4(10): e202000953.
doi: 10.26508/lsa.202000953
[43]   Toloczko A, Guo F S, Yuen H F, et al. Deubiquitinating enzyme USP9X suppresses tumor growth via LATS kinase and core components of the hippo pathway. Cancer Research, 2017, 77(18): 4921-4933.
doi: 10.1158/0008-5472.CAN-16-3413 pmid: 28720576
[44]   Choi K S, Choi H J, Lee J K, et al. The endothelial E 3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cellular Signalling, 2016, 28(11): 1642-1651.
doi: 10.1016/j.cellsig.2016.07.015
[45]   Adler J J, Heller B L, Bringman L R, et al. Amot130 adapts atrophin-1 interacting protein 4 to inhibit yes-associated protein signaling and cell growth. Journal of Biological Chemistry, 2013, 288(21): 15181-15193.
doi: 10.1074/jbc.M112.446534 pmid: 23564455
[46]   Ray G, Schmitt P T, Schmitt A P. Angiomotin-like1 links paramyxovirus M proteins to NEDD4 family ubiquitin ligases. Viruses, 2019, 11(2): 128.
doi: 10.3390/v11020128
[47]   Nie L T, Wang C, Li N, et al. Proteome-wide analysis reveals substrates of E 3 ligase RNF146 targeted for degradation. Molecular & Cellular Proteomics, 2020, 19(12): 2015-2030.
doi: 10.1074/mcp.RA120.002290
[48]   Wang H, Lu B, Castillo J, et al. Tankyrase inhibitor sensitizes lung cancer cells to endothelial growth factor receptor (EGFR) inhibition via stabilizing angiomotins and inhibiting YAP signaling. Journal of Biological Chemistry, 2016, 291(29): 15256-15266.
doi: 10.1074/jbc.M116.722967 pmid: 27231341
[49]   Campbell C I, Samavarchi-Tehrani P, Barrios-Rodiles M, et al. The RNF146 and tankyrase pathway maintains the junctional Crumbs complex through regulation of angiomotin. Journal of Cell Science, 2016, 129(18): 3396-3411.
doi: 10.1242/jcs.188417 pmid: 27521426
[50]   Vinci G, Buffat C, Simoncini S, et al. Gestational age-related patterns of AMOT methylation are revealed in preterm infant endothelial progenitors. PLoS One, 2017, 12(10): e0186321.
doi: 10.1371/journal.pone.0186321
[51]   Ernkvist M, Persson N L, Audebert S, et al. The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood, 2009, 113(1): 244-253.
doi: 10.1182/blood-2008-04-153874 pmid: 18824598
[52]   Mana-Capelli S, McCollum D. Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling. Journal of Biological Chemistry, 2018, 293(47): 18230-18241.
doi: 10.1074/jbc.RA118.004187 pmid: 30266805
[53]   Ortiz A, Lee Y C, Yu G Y, et al. Angiomotin is a novel component of cadherin-11/β-catenin/p 120 complex and is critical for cadherin-11-mediated cell migration. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2015, 29(3): 1080-1091.
doi: 10.1096/fsb2.v29.3
[54]   Hong W J. Angiomotin’g YAP into the nucleus for cell proliferation and cancer development. Science Signaling, 2013, 6(291): pe27.
[55]   Centorrino F, Andlovic B, Cossar P, et al. Fragment-based exploration of the 14-3-3/Amot-p130 interface. Current Research in Structural Biology, 2022, 4: 21-28.
doi: 10.1016/j.crstbi.2021.12.003 pmid: 35036934
[56]   Liang J J, Ruthel G, Freedman B D, et al. WWOX-mediated degradation of AMOTp 130 negatively affects egress of filovirus VP40 virus-like particles. Journal of Virology, 2022, 96(6): e0202621.
doi: 10.1128/jvi.02026-21
[57]   Morthorst S K, Nielsen C, Farinelli P, et al. Angiomotin isoform 2 promotes binding of PALS1 to KIF13B at primary cilia and regulates ciliary length and signaling. Journal of Cell Science, 2022, 135(12): jcs259471.
doi: 10.1242/jcs.259471
[58]   Basak T, Dey A K, Banerjee R, et al. Sequestration of eIF4A by angiomotin: A novel mechanism to restrict global protein synthesis in trophoblast cells. Stem Cells, 2021, 39(2): 210-226.
doi: 10.1002/stem.3305 pmid: 33237582
[59]   Yang J, Zhang X M, Chen Z L, et al. Angiomotin-p130 inhibits β-catenin stability by competing with Axin for binding to tankyrase in breast cancer. Cell Death & Disease, 2019, 10: 179.
[60]   Brunner P, Hastar N, Kaehler C, et al. AMOT130 drives BMP-SMAD signaling at the apical membrane in polarized cells. Molecular Biology of the Cell, 2020, 31(2): 118-130.
doi: 10.1091/mbc.E19-03-0179 pmid: 31800378
[61]   Wigerius M, Quinn D, Diab A, et al. The polarity protein Angiomotin p 130 controls dendritic spine maturation. The Journal of Cell Biology, 2018, 217(2): 715-730.
doi: 10.1083/jcb.201705184
[62]   Shi X L, Yin Z X, Ling B, et al. Rho differentially regulates the Hippo pathway by modulating the interaction between Amot and Nf 2 in the blastocyst. Development (Cambridge, England), 2017, 144(21): 3957-3967.
[63]   Xiao J J, Jin K Y, Wang J P, et al. Conditional knockout of TFPI-1 in VSMCs of mice accelerates atherosclerosis by enhancing AMOT/YAP pathway. International Journal of Cardiology, 2017, 228: 605-614.
doi: S0167-5273(16)33672-5 pmid: 27875740
[64]   Heller B, Adu-Gyamfi E, Smith-Kinnaman W, et al. Amot recognizes a juxtanuclear endocytic recycling compartment via a novel lipid binding domain. The Journal of Biological Chemistry, 2010, 285(16): 12308-12320.
doi: 10.1074/jbc.M109.096230
[65]   Stalin J, Harhouri K, Hubert L, et al. Soluble melanoma cell adhesion molecule (sMCAM/sCD146) promotes angiogenic effects on endothelial progenitor cells through angiomotin. The Journal of Biological Chemistry, 2013, 288(13): 8991-9000.
doi: 10.1074/jbc.M112.446518
[66]   Negrón-Pérez V M, Hansen P J. Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. Biol Reprod, 2018, 98(2): 170-183.
doi: 10.1093/biolre/iox172 pmid: 29228123
[67]   Zhou Y H, Zhang J L, Li H, et al. AMOTL1 enhances YAP1 stability and promotes YAP1-driven gastric oncogenesis. Oncogene, 2020, 39(22): 4375-4389.
doi: 10.1038/s41388-020-1293-5 pmid: 32313226
[68]   Zheng Y J, Zhang Y Y, Barutello G, et al. Angiomotin like-1 is a novel component of the N-cadherin complex affecting endothelial/pericyte interaction in normal and tumor angiogenesis. Scientific Reports, 2016, 6: 30622.
doi: 10.1038/srep30622 pmid: 27464479
[69]   Hultin S, Subramani A, Hildebrand S, et al. AmotL2 integrates polarity and junctional cues to modulate cell shape. Sci Rep, 2017, 7(1): 7548.
doi: 10.1038/s41598-017-07968-1 pmid: 28790366
[70]   Li Z Q, Wang Y Q, Zhang M, et al. The Amotl2 gene inhibits Wnt/β-catenin signaling and regulates embryonic development in zebrafish. Journal of Biological Chemistry, 2012, 287(16): 13005-13015.
doi: 10.1074/jbc.M112.347419
[71]   Huang H Z, Lu F I, Jia S J, et al. Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development (Cambridge, England), 2007, 134(5): 979-988.
doi: 10.1242/dev.02782
[72]   Cui R J, Jiang N, Zhang M Q, et al. AMOTL2 inhibits JUN Thr239 dephosphorylation by binding PPP2R2A to suppress the proliferation in non-small cell lung cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2021, 1868(1): 118858.
doi: 10.1016/j.bbamcr.2020.118858
[73]   Proszynski T J, Sanes J R. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. Journal of Cell Science, 2013, 126(Pt 10): 2225-2235.
doi: 10.1242/jcs.121327 pmid: 23525008
[74]   Han H, Yang B, Wang W. Angiomotin-like2 interacts with and negatively regulates AKT. Oncogene, 2017, 36(32): 4662-4669.
doi: 10.1038/onc.2017.101 pmid: 28368415
[75]   Kargozar S, Baino F, Hamzehlou S, et al. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev, 2020, 49(14): 5008-5057.
doi: 10.1039/c8cs01021h pmid: 32538379
[76]   Kretschmer M, Rüdiger D, Zahler S. Mechanical Aspects of Angiogenesis. Cancers (Basel), 2021, 13(19): 4987.
doi: 10.3390/cancers13194987
[77]   Roudier E, Chapados N, Decary S, et al. Angiomotin p80/p 130 ratio: a new indicator of exercise-induced angiogenic activity in skeletal muscles from obese and non-obese rats? J Physiol, 2009, 587(Pt 16): 4105-4119.
doi: 10.1113/jphysiol.2009.175554
[78]   Zhang Y Y, Zhang Y M, Kameishi S, et al. The Amot/integrin protein complex transmits mechanical forces required for vascular expansion. Cell Reports, 2021, 36(8): 109616.
doi: 10.1016/j.celrep.2021.109616
[79]   Chen J, Cheng J Y, Zhao C, et al. The Hippo pathway: a renewed insight in the craniofacial diseases and hard tissue remodeling. International Journal of Biological Sciences, 2021, 17(14): 4060-4072.
doi: 10.7150/ijbs.63305 pmid: 34671220
[80]   Mohajan S, Jaiswal P K, Vatanmakarian M, et al. Hippo pathway: regulation, deregulation and potential therapeutic targets in cancer. Cancer Letters, 2021, 507: 112-123.
doi: 10.1016/j.canlet.2021.03.006 pmid: 33737002
[81]   Crunkhorn S. New route to targeting the Hippo pathway. Nature Reviews Drug Discovery, 2021, 20(5): 344.
[82]   Kim M, Kim M, Park S J, et al. Role of angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Reports, 2016, 17(1): 64-78.
doi: 10.15252/embr.201540809 pmid: 26598551
[83]   Li Y J, Zhou H, Li F Z, et al. Angiomotin binding-induced activation of Merlin/NF 2 in the Hippo pathway. Cell Research, 2015, 25(7): 801-817.
doi: 10.1038/cr.2015.69
[84]   Mana-Capelli S, Paramasivam M, Dutta S, et al. Angiomotins link F-actin architecture to Hippo pathway signaling. Molecular Biology of the Cell, 2014, 25(10): 1676-1685.
doi: 10.1091/mbc.E13-11-0701 pmid: 24648494
[85]   Zhou C F, Liang Y Y, Zhou L, et al. TSPAN1 promotes autophagy flux and mediates cooperation between WNT-CTNNB 1 signaling and autophagy via the MIR454-FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy, 2021, 17(10): 3175-3195.
doi: 10.1080/15548627.2020.1826689
[86]   Liu J Q, Xiao Q, Xiao J N, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduction and Targeted Therapy, 2022, 7: 3.
doi: 10.1038/s41392-021-00762-6 pmid: 34980884
[87]   Chen X J, Lu Y L, Guo G C, et al. AMOTL2-knockdown promotes the proliferation, migration and invasion of glioma by regulating β-catenin nuclear localization. Oncology Reports, 2021, 46(1): 139.
doi: 10.3892/or
[88]   Koirala S, Klein J, Zheng Y M, et al. Tissue-specific regulation of the Wnt/β-catenin pathway by PAGE 4 inhibition of tankyrase. Cell Reports, 2020, 32(3): 107922.
doi: 10.1016/j.celrep.2020.107922
[89]   Zhai J L, Xiao Z Y, Wang Y M, et al. Human embryonic development: from peri-implantation to gastrulation. Trends in Cell Biology, 2022, 32(1): 18-29.
doi: 10.1016/j.tcb.2021.07.008
[90]   Shimono A, Behringer R R. Angiomotin regulates visceral endoderm movements during mouse embryogenesis. Curr Biol, 2003, 13(7): 613-617.
doi: 10.1016/s0960-9822(03)00204-5 pmid: 12676095
[91]   Aase K, Ernkvist M, Ebarasi L, et al. Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes Dev, 2007, 21(16): 2055-2068.
doi: 10.1101/gad.432007
[92]   Leung C Y, Zernicka-Goetz M. Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nature Communications, 2013, 4: 2251.
doi: 10.1038/ncomms3251 pmid: 23903990
[93]   Angulo-Urarte A, van der Wal T, Huveneers S. Cell-cell junctions as sensors and transducers of mechanical forces. Biochim Biophys Acta Biomembr, 2020, 1862(9): 183316.
doi: 10.1016/j.bbamem.2020.183316
[94]   Garcia M A, Nelson W J, Chavez N. Cell-cell junctions organize structural and signaling networks. Cold Spring Harbor Perspectives in Biology, 2018, 10(4): a029181.
doi: 10.1101/cshperspect.a029181
[95]   Wells C D, Fawcett J P, Traweger A, et al. A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell, 2006, 125(3): 535-548.
doi: 10.1016/j.cell.2006.02.045 pmid: 16678097
[96]   Han Z Y, Dash S, Sagum C A, et al. Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: implications for filovirus biology and budding. PLoS Pathogens, 2020, 16(1): e1008231.
doi: 10.1371/journal.ppat.1008231
[97]   Liang J J, Ruthel G, Sagum C A, et al. Angiomotin counteracts the negative regulatory effect of host WWOX on viral PPxY-mediated egress. Journal of Virology, 2021, 95(8): e00121-e00121.
[98]   Oda K, Matoba Y, Sugiyama M, et al. Structural Insight into the Interaction of Sendai Virus C Protein with Alix To Stimulate Viral Budding. Journal of Virology, 2021, 95(19): e0081521.
doi: 10.1128/JVI.00815-21
[99]   Baldan S, Meriin A B, Yaglom J, et al. The Hsp70-Bag3 complex modulates the phosphorylation and nuclear translocation of Hippo pathway protein Yap. Journal of Cell Science, 2021, 134(23): jcs259107.
doi: 10.1242/jcs.259107
[100]   Rojek K O, Krzemień J, Doleżyczek H, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biology, 2019, 17(5): e3000253.
doi: 10.1371/journal.pbio.3000253
[101]   Zhang Y, Yuan J, Zhang X L, et al. Angiomotin promotes the malignant potential of colon cancer cells by activating the YAP-ERK/PI3K-AKT signaling pathway. Oncology Reports, 2016, 36(6): 3619-3626.
doi: 10.3892/or.2016.5194 pmid: 27779692
[102]   Li L, Fan C M. A CREB-MPP7-AMOT regulatory axis controls muscle stem cell expansion and self-renewal competence. Cell Reports, 2017, 21(5): 1253-1266.
doi: S2211-1247(17)31463-8 pmid: 29091764
[103]   Zaltsman Y, Masuko S, Bensen J J, et al. Angiomotin regulates YAP localization during neural differentiation of human pluripotent stem cells. Stem Cell Reports, 2019, 12(5): 869-877.
doi: S2213-6711(19)30094-3 pmid: 31006631
[104]   Liu X, Hou W Q, He L, et al. AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation. Colloids and Surfaces B: Biointerfaces, 2019, 182: 110332.
doi: 10.1016/j.colsurfb.2019.06.061
[105]   Höffken V, Hermann A, Pavenstädt H, et al. WWC proteins: important regulators of hippo signaling in cancer. Cancers, 2021, 13(2): 306.
doi: 10.3390/cancers13020306
[106]   Zeng H, Ortiz A, Shen P F, et al. Angiomotin regulates prostate cancer cell proliferation by signaling through the Hippo-YAP pathway. Oncotarget, 2017, 8(6): 10145-10160.
doi: 10.18632/oncotarget.14358 pmid: 28052036
[107]   Yi C L, Shen Z W, Stemmer-Rachamimov A, et al. The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Science Signaling, 2013, 6(291): ra77.
[108]   Wang J Y, Wang H M, Zhang Y, et al. Mutual inhibition between YAP and SRSF 1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer. Cellular Signalling, 2014, 26(5): 1048-1059.
doi: 10.1016/j.cellsig.2014.01.022
[109]   Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 2020, 77(9): 1745-1770.
doi: 10.1007/s00018-019-03351-7 pmid: 31690961
[110]   Levchenko T, Bratt A, Arbiser J L, et al. Angiomotin expression promotes hemangioendothelioma invasion. Oncogene, 2004, 23(7): 1469-1473.
doi: 10.1038/sj.onc.1207264 pmid: 14730344
[111]   Mojallal M, Zheng Y J, Hultin S, et al. AmotL2 disrupts apical-basal cell polarity and promotes tumour invasion. Nature Communications, 2014, 5: 4557.
doi: 10.1038/ncomms5557 pmid: 25080976
[112]   Ruan W D, Wang P, Feng S Q, et al. MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. OncoTargets and Therapy, 2016, 9: 303-313.
[113]   Huang T T, Zhou Y H, Zhang J L, et al. The physiological role of Motin family and its dysregulation in tumorigenesis. Journal of Translational Medicine, 2018, 16(1): 98.
doi: 10.1186/s12967-018-1466-y pmid: 29650031
[114]   Ou R Y, Lv J M, Zhang Q W, et al. circAMOTL1 motivates AMOTL1 expression to facilitate cervical cancer growth. Molecular Therapy-Nucleic Acids, 2020, 19: 50-60.
doi: S2162-2531(19)30269-0 pmid: 31812104
[115]   Zhang H G, Sun J, Ju W C, et al. Apatinib suppresses breast cancer cells proliferation and invasion via angiomotin inhibition. American Journal of Translational Research, 2019, 11(7): 4460-4469.
pmid: 31396349
[116]   Couderc C, Boin A, Fuhrmann L, et al. AMOTL1 promotes breast cancer progression and is antagonized by merlin. Neoplasia, 2016, 18(1): 10-24..
doi: 10.1016/j.neo.2015.11.010 pmid: 26806348
[117]   Li D, Shen Y W, Ren H, et al. Angiomotin-p130 inhibits vasculogenic mimicry formation of small cell lung cancer independently of Smad2/3 signal pathway. Journal of Bioenergetics and Biomembranes, 2021, 53(3): 295-305.
doi: 10.1007/s10863-021-09891-7 pmid: 33712992
[118]   Hsu Y L, Hung J Y, Chou S H, et al. Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression. Oncogene, 2015, 34(31): 4056-4068.
doi: 10.1038/onc.2014.333 pmid: 25381822
[119]   Xu Q Q, Gao B, Liu X L, et al. Myocyte enhancer factor 2D promotes hepatocellular carcinoma through AMOTL2/YAP signaling that inhibited by luteolin. International Journal of Clinical and Experimental Pathology, 2022, 15(5): 206-214.
pmid: 35698637
[120]   Wei X X, Chen Y H, Jiang X J, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Molecular Cancer, 2021, 20(1): 7.
doi: 10.1186/s12943-020-01288-1 pmid: 33397409
[121]   He M Y, Kridel R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia, 2021, 35(8): 2151-2165.
doi: 10.1038/s41375-021-01285-3 pmid: 34017074
[122]   Sempere L F, Azmi A S, Moore A. MicroRNA-based diagnostic and therapeutic applications in cancer medicine. WIREs RNA, 2021, 12(6): e1662.
[123]   Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. Journal of Cellular Physiology, 2019, 234(8): 12369-12384.
doi: 10.1002/jcp.28058 pmid: 30605237
[124]   Lu Y, Cao J, Napoli M, et al. MiR-205 regulates basal cell identity and stem cell regenerative potential during mammary reconstitution. Stem Cells (Dayton, Ohio), 2018, 36(12): 1875-1889.
doi: 10.1002/stem.2914
[125]   Wang X Q, Du C, He X M, et al. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Bioscience Reports, 2018, 38(5): BSR20180150.
doi: 10.1042/BSR20180150
[126]   Choi S A, Koh E J, Kim R N, et al. Extracellular vesicle-associated miR-135b and-135a regulate stemness in group 4 medulloblastoma cells by targeting angiomotin-like 2. Cancer Cell International, 2020, 20(1): 558.
doi: 10.1186/s12935-020-01645-6
[127]   Zhang H G, Fan Q X. MicroRNA-205 inhibits the proliferation and invasion of breast cancer by regulating AMOT expression. Oncology Reports, 2015, 34(4): 2163-2170.
doi: 10.3892/or.2015.4148 pmid: 26239614
[128]   Wan H Y, Li Q Q, Zhang Y, et al. MiR-124 represses vasculogenic mimicry and cell motility by targeting AMOTL 1 in cervical cancer cells. Cancer Letters, 2014, 355(1): 148-158.
doi: 10.1016/j.canlet.2014.09.005
[129]   Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. Journal of Experimental & Clinical Cancer Research: CR, 2019, 38(1): 146.
[130]   Levchenko T, Veitonmäki N, Lundkvist A, et al. Therapeutic antibodies targeting angiomotin inhibit angiogenesis in vivo. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2008, 22(3): 880-889.
doi: 10.1096/fsb2.v22.3
[131]   Holmgren L, Ambrosino E, Birot O, et al. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(24): 9208-9213.
[132]   Arigoni M, Barutello G, Lanzardo S, et al. A vaccine targeting angiomotin induces an antibody response which alters tumor vessel permeability and hampers the growth of established tumors. Angiogenesis, 2012, 15(2): 305-316.
doi: 10.1007/s10456-012-9263-3 pmid: 22426512
[133]   Scott L J. Correction to: apatinib: a review in advanced gastric cancer and other advanced cancers. Drugs, 2018, 78(7): 759.
doi: 10.1007/s40265-018-0913-7 pmid: 29728984
[134]   Radaszkiewicz K A, Beckerová D, Woloszczuková L, et al. 12-O-tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling. Scientific Reports, 2020, 10: 15922.
doi: 10.1038/s41598-020-73074-4 pmid: 32985604
[135]   Zhu G Q, Chen Y, Zhang X, et al. 12-O-Tetradecanoylphorbol-13-acetate (TPA) is anti-tumorigenic in liver cancer cells via inhibiting YAP through AMOT. Scientific Reports, 2017, 7: 44940.
doi: 10.1038/srep44940 pmid: 28322318
[136]   Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev, 2020, 34(5-6): 360-394.
doi: 10.1101/gad.334516.119
[137]   Jia J Y, Qiao Y, Pilo M G, et al. Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade. PLoS One, 2017, 12(9): e0184068.
doi: 10.1371/journal.pone.0184068
[1] JIN Qian, SHI Meng, LIU Zhan-biao, ZHANG Yi, ZHU Si-qing, SHI Jing-jing, ZONG Xing-xing, CHEN Xue-jun, LI Li-qin. Analysis of Differentially Expressed Proteins in the Cervical Spinal Cord of Guinea Pigs Subacutely Exposed to Soman[J]. China Biotechnology, 2023, 43(2/3): 64-74.
[2] DENG Si-yu, LIANG Bing, WEI Wei, WANG Meng-na, CAO You-de. Effects of miR-34a-5p on Triple Negative Breast Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2023, 43(1): 18-26.
[3] LIANG Fan,CHENG Hong-wei,ZHANG Jun-he. Establishment and Application Progress of Patient-derived Xenograft Model of Esophageal Cancer[J]. China Biotechnology, 2022, 42(8): 74-84.
[4] Zhi-xin YAO,Wan-ming LI. Advances in Aptamers in the Diagnosis and Treatment of Triple-negative Breast Cancer[J]. China Biotechnology, 2022, 42(7): 62-68.
[5] YUAN Shu-hui,LI Shao-hua,FANG Wei,PENG Zhi-qiang,ZHANG Ling-qiang. XIAP Mediated-PTEN Neddylation Promotes Proliferation and Migration of Colon Cancer Cells[J]. China Biotechnology, 2022, 42(5): 27-36.
[6] BAO Yi-kai,HONG Hao-fei,SHI Jie,ZHOU Zhi-fang,WU Zhi-meng. Development and Biological Activity Analysis of PSMA Specific Mutivalent Nanobodies[J]. China Biotechnology, 2022, 42(5): 37-45.
[7] HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian. Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants[J]. China Biotechnology, 2022, 42(4): 85-92.
[8] ZHANG Hui,CHEN Hua-ning,KUDELAIDI Kuerban,WANG Song-na,LIU Jia-yang,ZHAO Zhen,YE Li. The Role of Wnt/β-catenin Signaling Pathway in Carcinogenesis and Immunotherapy[J]. China Biotechnology, 2022, 42(1/2): 104-111.
[9] ZHANG Sai,YE Ji-wei,SHEN Yuan-jing,MU Ke-fei,GUO Xin-wu. Effects of miR-324-3p Targeting GPX4 on Ferroptosis in Prostate Cancer Cells[J]. China Biotechnology, 2022, 42(1/2): 72-79.
[10] HU Kai,HU Jing,SUN Zi-jiu,LIU Shi-yan,LIAO De-yu,YU Huo-mei,ZHANG Yan. Effects of UPF1 on the Proliferation, Migration and Invasion of Breast Cancer Strains MDA-MB-231 and MCF-7[J]. China Biotechnology, 2022, 42(1/2): 58-71.
[11] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[12] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[13] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[14] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[15] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.