Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (6): 1-9    DOI: 10.13523/j.cb.2001010
    
Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis
GUO Yang1,3,WAN Ying-han2,3,WANG Jue2,3,GONG Hui2,3,ZHOU Yu4,CI Lei4,WAN Zhi-peng4,SUN Rui-lin4,FEI Jian1,3,4,*,SHEN Ru-ling2,3,*()
1 School of Life Science and Technology, Tongji University, Shanghai 200092, China
2 Shanghai Laboratory Animal Research Center,Shanghai 201203, China
3 Joint Laboratory of Model Biology and Comparative Medical Research, Shanghai Laboratory Animal Research Center,Shanghai 201203,China
4 Shanghai Model Organisms Center Inc., Shanghai 201318, China
Download: HTML   PDF(1799KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To construct a Toll-like receptor 4 (TLR4) gene knockout mouse model using CRISPR / Cas9 technology, and observe the changes in mutant mice’s response to gram-negative bacterial lipopolysaccharide (LPS) stimulation.Methods: One pair of sgRNA fragments were designed and synthesized for exon 2 of TLR4 gene, mixed with mRNA encoding Cas9 and then injected with TLR4 gene knockout mice through fertilized egg microinjection method, and gene knockout homozygous mice were obtained by breeding (TLR4 -/-mice); The response of TLR4-/-mice to inflammatory stress was analyzed by LPS stimulation, and compared with wild-type control (WT) at the molecular and pathological levels.Results: PCR and sequencing showed that exon 2 of TLR4 gene was successfully knocked out in mouse genes. After LPS stimulation, the expressions of inflammatory factors such as IL1β, IL6, MyD88, iNOS and TNFa were detected in the heart of wild-type mice. Significantly up-regulated in liver and lung tissues, but almost no change in TLR4 -/-mice; blood biochemical indicators showed that urea (Crea) and creatinine (Cre) levels in WT mice were significantly increased after LPS stimulation, and TLR4-/-mice had no significant changes before and after stimulation. Pathological analysis also found that TLR4-/-mice were able to resist LPS damage to kidney tissue.Conclusion: TLR4 gene knockout mouse model was successfully constructed using CRISPR / Cas9 technology. The deletion of TLR4 can reduce the response of IL1β, IL6, MyD88, iNOS and TNFa inflammatory factors to LPS stimulation, inhibit LPS-induced inflammatory response and tissue damage.



Key wordsTLR4      CRISPR/Cas9 gene      Knock-out      LPS     
Received: 02 January 2020      Published: 23 June 2020
ZTFLH:  Q291  
Corresponding Authors: Jian FEI,Ru-ling SHEN     E-mail: alieen_shen@163.com
Cite this article:

GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis. China Biotechnology, 2020, 40(6): 1-9.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001010     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I6/1

sgRNA靶序列 序列信息(5'-3')
sgRNA 1 GACATCTTATTCCACATATC
sgRNA 2 CATACTCCTAATTATTAAGC
Table 1 sgRNA sequence information
序列信息(5'-3')
SgRNA1正义链 CACCGGACATCTTATTCCACATATC
SgRNA1反义链 AAACGATATGTGGAATAAGATGTCC
SgRNA2正义链 CACCGCATACTCCTAATTATTAAGC
SgRNA2反义链 AAACGCTTAATAATTAGGAGTATGC
Table 2 Oligonucleotide chain sequence information
引物 序列信息(5'-3')
P1 AGCAAAGACAAGGGAGTAAGAA
P2 GCCTGAAATACTGGCTAAAAG
Table 3 Primer sequence information
Gene 上游序列信息(5'-3') 下游序列信息(5'-3')
TLR4 ATGGCACTGTTCTTCTCCTG AGCTCAGATCTATGTTCTTGGTTG
IL1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG
TNF-α CCTGTAGCCCACGTCGTAG GGGAGTAGACAAGGTACAACCC
MyD88 GGGAGTAGACAAGGTACAACCC GTCTGTTCTAGTTGCCGGATC
IL6 CTTCACAAGTCGGAGGCTTAAT CAGTTTGGTAGCATCCATCATTTC
iNOS GCAAACATCACATTCAGATCCC TCAGCCTCATGGTAAACACG
β-actin CCTGTATGCCTCTGGTCGTA CCATCTCCTGCTCGAAGTCT
Table 4 RT-PCR primer sequences
Fig.1 Knockout strategy of TLR4-/- mice
Fig.2 Genotype results of TLR4 gene knockout (a) Genotyping strategy of TLR4 gene knockout mouse (b) F1 generation of TLR4 gene knockout mouse genotyping representative result: wild type mouse PCR product has only a band of 1 491bp, TLR4 gene knockout heterozygotes In addition to the wild type 1 491bp band, PCR product has another 674 bp band (c) The genotyping representative result of the offspring mice: Wild type mice with a 1 491bp band, the homozygous mice with a 674bp band; the heterozygous mice with two bands of 1 491bp and 674bp, respectively. WT: wild type; HE: heterozygous; HO: homozygous; Con: wild type control; M: 1kb DNA marker
类型 序列信息(5'-3')
野生型序列 atgttaacatattgagaattcaggggatattttttcttcctgatatgtggaataagatgtcttgcaaatatgaagaggcagataaataaatggagaaggatgggtgtgataccatatccccaga
......agatatttatgaaccatgtcttatatgttgtatgtctaaactacagaagaagaatttatagatacaaaacccatactcctaattattaagcaggataaaatcctctttaacaaa
敲除类型1 atgttaacatattgagaattcaggggatattttttcttcctgata---(-825bp)---aaatcctctttaacaaa
敲除类型2 atgttaacatattgagaattcaggggatattttttcttcctgata---(-817bp)---gcaggataaaatcctctttaacaaa
Table 5 The sequence information of TLR4 wild type and two knockout genotype
Fig.3 Analysis of relative mRNA expression level in TLR4 and its targets TLR4 (a) and IL1biNOSMyD88IL6TNFα (b)were determined by Real-time PCR in WT and TLR4-/- mice LPS induced
Fig.4 Expression of iNOS, TNF-α and IL-6 in mice induced by LPS before and after (a) Expression of iNOS in liver used by Western-blot:1-WT;2-WT by LPS induced;3-TLR4 -/-;4-TLR4-/- by LPS induced, n=3 (b) Level of serum TNF-α and IL-6 induced by LPS before and after using ELISA,NS means not be detected
Fig.5 The function of kidney in mice induced by LPS before and after (a) Serum level of Urea and Cre,n=3(* P<0.05, *** P<0.001) (b) LPS induced Kidney injury in WT and TLR4-/- mice,black arrows mean brushfringe of renal tubule
[1]   Medzhitov R, Janeway C A , Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell, 1997,91(3):295-298.
doi: 10.1016/s0092-8674(00)80412-2 pmid: 9363937
[2]   Kawasaki T, Kawai T . Toll-like receptor signaling pathways. Front Immunol, 2014,5 461.
pmid: 25309543
[3]   Kabelitz D . Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol, 2007,19(1):39-45.
pmid: 17129718
[4]   Sepehri Z, Kiani Z, Kohan F , et al. Toll like receptor 4 and hepatocellular carcinoma; a systematic review. Life Sci, 2017,179 80-87.
pmid: 28472619
[5]   Lu Y C, Yeh W C, Ohashi P S . LPS/TLR4 signal transduction pathway. Cytokine, 2008,42(2):145-151.
[6]   Medzhitov R, Janeway C A , Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol, 1997,9(1):4-9.
[7]   Thomas A V, Broers A D, Vandegaart H F , et al. Genomic structure, promoter analysis and expression of the porcine (Sus scrofa) TLR4 gene. Molecular Immunology, 2006,43(6):653-659.
[8]   Khedr L H, Nassar N N, Rashed L , et al. TLR4 signaling modulation of PGC1-alpha mediated mitochondrial biogenesis in the LPS-Chronic mild stress model: effect of fluoxetine and pentoxiyfylline. Life Sci, 2019,116869.
[9]   Asea A . Heat shock proteins and toll-like receptors. Handb Exp Pharmacol, 2008, ( 183):111-127.
[10]   Fei D, Meng X, Yu W , et al. Fibronectin (FN) cooperated with TLR2/TLR4 receptor to promote innate immune responses of macrophages via binding to integrin beta1. Virulence, 2018,9(1):1588-1600.
pmid: 30272511
[11]   Voelcker V, Gebhardt C, Averbeck M , et al. Hyaluronan fragments induce cytokine and metalloprotease upregulation in human melanoma cells in part by signalling via TLR4. Exp Dermatol, 2008,17(2):100-107.
pmid: 18031543
[12]   Wang Y, Qian Y, Fang Q , et al. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun, 2017,8 13997.
doi: 10.1038/ncomms13997 pmid: 28045026
[13]   Zhang M, Xue Y, Chen H , et al. Resveratrol inhibits MMP3 and MMP9 expression and secretion by suppressing TLR4/NF-kappaB/STAT3 activation in Ox-LDL-Treated HUVECs. Oxid Med Cell Longev, 2019,2019 9013169.
[14]   Wang D, Gilbert J R, Taylor G M , et al. TLR4 inactivation in myeloid cells accelerates bone healing of a calvarial defect model in mice. Plast Reconstr Surg, 2017,140(2):296e-306e.
[15]   Oblak A and Jerala R . Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol, 2011,2011 609579.
pmid: 22110526
[16]   Ohadian Moghadam S, Nowroozi M R . Toll-like receptors: the role in bladder cancer development, progression and immunotherapy. Scand J Immunol, 2019,e12818.
[17]   Khademalhosseini M, Arababadi M K . Toll-like receptor 4 and breast cancer: an updated systematic review. Breast Cancer, 2019,26(3):265-271.
[18]   Huang B, Zhao J, Li H , et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res, 2005,65(12):5009-5014.
[19]   Kelly M G, Alvero A B, Chen R , et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res, 2006,66(7):3859-3868.
pmid: 16585214
[20]   Hoshino K, Takeuchi O, Kawai T , et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 1999,162(7):3749-3752.
pmid: 10201887
[21]   Wiedenheft B, Sternberg S H, Doudna J A . RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482(7385):331-338.
[22]   Gasiunas G, Barrangou R, Horvath P , et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(39):E2579-E2586.
[23]   Wang H, Yang H, Shivalila C S , et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013,153(4):910-918.
[24]   Shen B, Zhang J, Wu H , et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research, 2013,23(5):720-723.
[25]   Reyon D, Tsai S Q, Khayter C , et al. FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnology, 2012,30(5):460-465.
[26]   Royet J . Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol Immunol, 2004,41(11):1063-1075.
[27]   Takeuchi O, Akira S . Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol, 2001,1(4):625-635.
pmid: 11357875
[28]   Shi Y J, Gong H F, Zhao Q Q , et al. Critical role of toll-like receptor 4 (TLR4) in dextran sulfate sodium (DSS)-Induced intestinal injury and repair. Toxicol Lett, 2019,3157(23):23-30.
[29]   Ruiz E, Penrose H M, Heller S , et al. Bacterial TLR4 and NOD2 signaling linked to reduced mitochondrial energy function in active inflammatory bowel disease. Gut Microbes, 2019, 1-14.
[30]   Florim G M, Caldas H C, Gonçalves N N , et al. Activation of HMGB1 - TLR4 pathway and inflammasome contribute to enhanced inflammatory response in extended criteria and kidneys with KDPI ≥ 85. Transplantation, 2020,104(4):724-730.
[31]   Zhang L, Sun D, Bao Y , et al. Nerolidol protects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling. Phytotherapy Research: PTR, 2017,31(3):459-465.
[32]   Zhao J, Zheng H, Sui Z , et al. Ursolic acid exhibits anti-inflammatory effects through blocking TLR4-MyD88 pathway mediated by autophagy. Cytokine, 2019,123:154-726.
[1] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[2] Lei-zhao HUA,Xiao-ping YI,Ju CHU,Ying-ping ZHUANG,Si-liang ZHANG. Process Control and Optimization of PCV2 Production of VLPs Based on PAT[J]. China Biotechnology, 2018, 38(8): 50-58.
[3] SUN Peng-yan, LI Kui, LIU Cun-bao, YAO Yu-feng, CHU Xiao-jie, BAI Hong-mei, YANG Xu, HUANG Wei-wei, SUN Wen-jia, MA Yan-bing. Co-expression of Ebola Virus GP and VP40 Proteins and Virus-like particles Assembly in Mammalian Cells[J]. China Biotechnology, 2016, 36(12): 66-71.
[4] WAN Fang, ZHANG Bin, CHEN Min-liang, CHEN Jin-cong, CHEN Xue-lan. Comparsion of the Effects of pta and ack Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum[J]. China Biotechnology, 2015, 35(9): 28-34.
[5] WAN Fang, ZHANG Bin, CHEN Min-liang, CHEN Jin-cong, CHEN Xue-lan . Effects of proC and putP Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum[J]. China Biotechnology, 2015, 35(8): 51-58.
[6] LI Juan, LIU Li-na, HU Dan, ZHU XU-hui, GONG Xiu-fang, ZHAO Lin, ZHONG Jing-hao, PAN Xiu-zhen, WANG Chang-jun. Construction and Virulence Analysis of MocR Transcription Regulator SSU0562 Gene Knock-out Mutant in Streptococcus suis Serotype2[J]. China Biotechnology, 2015, 35(7): 8-14.
[7] CHU Xiao-jie, LI Yang, LONG Qiong, YAO Yu-feng, SUN Wen-jia, HUANG Wei-wei, YANG Xu, Liu Cun-bao, MA Yan-bing. Development of a HPV16 E7 CTLs Peptides-based Virus-like Particle Therapeutic Vaccine[J]. China Biotechnology, 2015, 35(2): 45-51.
[8] MA Huai-yuan, HUANG Fei, BAI Lin-han. Accumulation of Aspartic Acid in Escherichia coli W3110 is Improved by Homologous Recombination[J]. China Biotechnology, 2014, 34(06): 61-67.
[9] . Rhizosecretion of HIV-1 recombinant capsid protein from transgenic Lycium barbarum L. hairy roots[J]. China Biotechnology, 2007, 27(2): 53-57.