Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (8): 51-58    DOI: 10.13523/j.cb.20150808
    
Effects of proC and putP Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum
WAN Fang1, ZHANG Bin1, CHEN Min-liang2, CHEN Jin-cong2, CHEN Xue-lan1
1. College of Life Science, Jiangxi Normal University, Nanchang 330022, China;
2. College of Life Science, Nanchang University, Nanchang 330047, China
Download: HTML   PDF(798KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The recombinant strains of C. crenatum MT-M4 ΔproC and C. crenatum MT-M4 ΔputP were separately constructed based on genome-scale metabolic network model (GSMN) of Corynebacterium glutamicum. As results shown, L-arginine production of C. crenatum MT-M4 ΔproC was significantly increased by approximately 15.90% higher than that of the original strain, reached to 9.94g/L with glucose transformation rate increased by 26.02%. However, the growth of C. crenatum MT-M4 ΔproC was obviously inhibited. When 24 mmol/L of proline was added, the arginine production reached to 12.22g/L and its growth also got well. The L-arginine production of C. crenatum MT-M4 ΔputP was significantly increased by 42.70% and reached to 12.23g/L with glucose transformation rate increased by 49.31%. The results showed that putP deletion compared with proC deletion was more conducive to L-arginine biosynthesis. The disruption of putP had no influence on the physiological metabolism of the bacteria strain and the mutant strain did not need proline added in medium.



Key wordsGene knock-out      Corynebacterium crenatum      L-arginine      Genome-scale metabolic network model      Metabolism     
Received: 19 March 2015      Published: 25 August 2015
ZTFLH:  Q789  
Cite this article:

WAN Fang, ZHANG Bin, CHEN Min-liang, CHEN Jin-cong, CHEN Xue-lan . Effects of proC and putP Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum. China Biotechnology, 2015, 35(8): 51-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150808     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I8/51


[1] Mou J, Fang H, Liu Y, et al. Design, synthesis and primary activity assay of bi-or tri-peptide analogues with the scaffold L-arginine as amino-peptidase N/CD13 inhibitors. Bioorganic & Medicinal Chemistry, 2010, 18(2): 887-895.

[2] Bing W, Jun B, Jian G, et al. L-arginine impacts pulmonary vascular structure in rats with an aortocaval shunt. The Journal of Surgical Research, 2002, 108(1): 20-31.

[3] Greene J M, Dunaway C W, Bowers S D, et al. Dietary L-arginine supplementation during gestation in mice enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit. The Journal of Nutrition, 2012, 142(3): 456-460.

[4] 徐美娟, 张显, 饶志明, 等. 钝齿棒杆菌 N-乙酰鸟氨酸转氨酶的克隆表达分析及其重组菌的精氨酸发酵. 生物工程学报, 2011, 27(7): 1013-1023. Xu M J, Zhang X, Rao Z M, et al. Cloning, expression and characterization of N-acetylornithine aminotransferase from Corynebacterium crenatum and its effects on L-arginine fermentation. Chinese Journal of Biotechnology, 2011, 27(7): 1013-1023.

[5] Dou W, Xu M, Cai D, et al. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 2011, 165(3-4): 845-855.

[6] 张斌, 陈进聪, 万方, 等. L-精氨酸产生菌的分子育种. 中国生物工程杂志, 2014, 34(4): 127-132. Zhang B, Chen J C, Wan F, et al. Progress of molecular breeding in L-arginine producing strains. China Biotechnology, 2014, 34(4): 127-132.

[7] Ikeda M, Mitsuhashi S, Tanaka K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Applied and Environmental Microbiology, 2009, 75(6): 1635-1641.

[8] Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012, 43(1): 255-266.

[9] Park S H, Kim H U, Kim T Y, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature Communications, 2014, 5: 4618

[10] 王晖, 马红武, 赵学明. 基因组尺度代谢网络研究进展. 生物工程学报, 2010, 26(10): 1340-1348. Wang H, Ma H W, Zhao X M. Progress in genome-scale metabolic network: a review. Chinese Journal of Biotechnology, 2010, 26(10): 1340-1348.

[11] Huang D, Li S, Xia M, et al. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microbial Cell Factories,2013,12(1):1-18.

[12] Li S, Huang D, Li Y, et al. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microbial Cell Factories, 2012,11(1):101.

[13] Kjeldsen K R, Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnology and Bioengineering, 2009, 102(2): 583-597.

[14] Meng H, Lu Z, Wang Y, et al. In silico improvement of heterologous biosynthesis of erythromycin precursor 6-deoxyerythronolide B in Escherichia coli. Biotechnology and Bioprocess Engineering, 2011, 16(3): 445-456.

[15] Lee S J, Lee D Y, Kim T Y, et al. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Applied and Environmental Microbiology, 2005, 71(12): 7880-7887.

[16] Delauney A J, Verma D P S. A soybean gene encoding Δ1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Molecular and General Genetics, 1990, 221(3): 299-305.

[17] Hilger D, Polyhach Y, Jung H, et al. Backbone structure of transmembrane domain IX of the Na+/proline transporter PutP of Escherichia coli. Biophysical Journal, 2009, 96(1): 217-225.

[18] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry,1959,31(3): 426-428.

[19] Jensen J V, Wendisch V F. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact, 2013, 12: 63.

[20] 郑素慧, 李文军, 娄恺. L-脯氨酸发酵生产的研究进展. 新疆农业科学, 2007, 44(S2): 6-10. Zheng S H, Li W J, Lou K. Research progress of L-proline production by fermentation. Xinjiang Agricultural Sciences, 2007, 44(S2): 6-10.

[21] Csonka L N, Gelvin S B, Goodner B W, et al. Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene, 1988, 64(2): 199-205.

[22] 武敏, 马红武. 基因组尺度集成细胞网络模型研究进展. 微生物学通报, 2014, 41(2): 367-375. Wu M, Ma H W. The progress of integrated genome-scale cellular networks. Institute of Microbiology, 2014, 41(2): 367-375.

[1] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[2] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[3] Chao-jing GUO,Qiong ZHU,Xin ZHANG,Lei LI,Ling-qiang ZHANG. Generation and Phenotypic Analysis of Hepatic-specific Deubiquitinase OTUB1 Knockout Mice Model[J]. China Biotechnology, 2019, 39(5): 80-87.
[4] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.
[5] Pei-yi LI,Yu-cong ZHOU,Ya-qian LI,Jie CHEN. Study on Functional Properties of Carbon Catabolite Repressor CRE1 in Trichoderma atroviride[J]. China Biotechnology, 2018, 38(6): 17-25.
[6] Jing-xia LI,Hui XIA,Xiu-lan LV,Jin WANG,Dong LIANG. The Metabolism and Regulation of Ascorbic Acid: A Case Study via Model and Horticultural Plant[J]. China Biotechnology, 2018, 38(3): 105-114.
[7] ZHOU Lin, WANG Liang, GAO Juan, ZHAO Quan-yu, WEI Wei, SUN Yu-han. Transcriptomic Analysis of Response to Phenol of Evolved and Unevolved Chlorella Strains[J]. China Biotechnology, 2017, 37(7): 72-79.
[8] XIA Qian-jun, WANG Fei, LI Xun. Review of Yarrowia lipolytica for SCO Production[J]. China Biotechnology, 2017, 37(3): 99-105.
[9] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[10] LIU Wen-bo, CHEN Yu-bao, XING Yu-hua. Advances in Research on Genetic Polymorphism of Cytochrome P450 and Drug Metabolism[J]. China Biotechnology, 2016, 36(12): 104-110.
[11] WANG Hong chao, ZHANG Chen, CHEN Dian ning, QIAO Ju yuan, CHEN Hai qin, GU Zhen nan, ZHANG Hao, CHEN Wei, CHEN Yong quan. Cloning, Expression and Function Analysis of Methylenetetrahydrofolate Dehydrogenase from Mortierella alpina[J]. China Biotechnology, 2016, 36(11): 23-29.
[12] ZHOU Qian, ZHAO Hui-xin, LI Ping-ping, ZENG Wei-jun, LI Yan-hong, GE Feng-wei, ZHAO Jun-jie, ZHAO He-ping. De novo Characterization of the Seed Transcriptome of Lepidium apetalum Willd[J]. China Biotechnology, 2016, 36(1): 38-46.
[13] WAN Fang, ZHANG Bin, CHEN Min-liang, CHEN Jin-cong, CHEN Xue-lan. Comparsion of the Effects of pta and ack Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum[J]. China Biotechnology, 2015, 35(9): 28-34.
[14] LI Juan, LIU Li-na, HU Dan, ZHU XU-hui, GONG Xiu-fang, ZHAO Lin, ZHONG Jing-hao, PAN Xiu-zhen, WANG Chang-jun. Construction and Virulence Analysis of MocR Transcription Regulator SSU0562 Gene Knock-out Mutant in Streptococcus suis Serotype2[J]. China Biotechnology, 2015, 35(7): 8-14.
[15] CHEN Jing-jing, XING Gui-chun, ZHANG Ling-qiang. Generation of FBXL15 Conditional Knockout Mice Using the Loxp-Cre Strategy[J]. China Biotechnology, 2015, 35(4): 74-79.