Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 21-31    DOI: 10.13523/j.cb.20181204
Orginal Article     
To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research
ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin()
Key laboratory of Industrial Biotechnology,Ministry of Education,Jiangnan University,Wuxi 214122,China
Download: HTML   PDF(1342KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to promote the efficient expression of leucine dehydrogenase in Bacillus subtilis, the inducible and constitutive promoters were inserted downstream of PHpaII, which is the native promoter of plasmid pMA5, to investigate the effect on LeuDH by dual-promoter. Two inducible promoters (Pgrac, Pglv-M1) and four constitutive promoters (P43, Plaps, PHpaII, PamyQ) were selected for expression of LeuDH. The dual promoter was consisted in the constitutive promoter PamyQ and PHpaII had the best performance, reaching 31.24U/ml, which was 3.4 times higher than that of the single promoter PHpaII. Four signal peptides of Sec pathway and Tat pathway were fused to behind the best dual-promoter PHpaII-PamyQ, respectively. However, this combination did not give higher enzyme activity. The strain B. subtlis 168/pW6 with the best activity of producing leucine dehydrogenase were analyzed in 7.5L fermenter. The enzyme activity reached 217.96U/ml, which was 6.97 times higher than the shake flask level. The results for industrial production of leucine dehydrogenase have a certain reference value.



Key wordsLeucine dehydrogenase      Bacillus subtilis      Dual-promoter      Signal peptide      Fermentation enzyme production     
Received: 11 June 2018      Published: 10 January 2019
ZTFLH:  Q78  
Corresponding Authors: Hai-lin YANG     E-mail: yanghailin@jiangnan.edu.cn
Cite this article:

ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research. China Biotechnology, 2018, 38(12): 21-31.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181204     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I12/21

引物 序列
Pgrac-F GGGAATTCCATATGAGCTATTGTAACATAATCGG
Pgrac-R CGCGGATCCTGATCCTTCCTCCTTTAATT
P43-F GGGAATTCCATATGTGATAGGTGGTATGTTTTCGC
P43-R CGCGGATCCGTGTACATTCCTCTCTTACCT
PHpaII-F GGGAATTCCATATGGGTGGAGATTTTTTGAGTGAT
PHpaII-R CGCGGATCCTAAATCGCTCCTTTTTAGGTG
PamyQ-F GGGAATTCCATATGGGCGGCGTTCTGTTTCTG
PamyQ-R CGCGGATCCATAAGGCAGTAAAGAGGTTTTG
SamyQ-F1 CGCGGATCCATGATTCAAAAACGAAAGCGG
SamyQ-R1 ATTCGAAGATCTCCAGGGTCATGTCGACTACGGCTGATGTTTTTGTAATCGGC
SamyQ-F2 GCCGATTACAAAAACATCAGCCGTAGTCGACATGACCCTGGAGATCTCCGAAT
SamyQ-R2 CGACGCGTTTAACGACGGCTAATGATATCGTGACCG
SsacB-F1 CGCGGATCCATGAACATCAAAAGTTTGC
SsacB-R1 ACGCGTCGACCGCAAACGCTTGAGTTGCGCCT
SphoD-F1 CGCGGATCCATGGCATACGACAGTCGTTTTG
SphoD-R1 ACGCGTCGACGGCCCCAACCGACTGGGCAATC
SywbN-F1 CGCGGATCCATGAGCGATGAACAAAAAAAGCC
SywbN-R1 ACGCGTCGACCGCAACGGCTGCCCCCGCCAT
Table 1 List of primers
Fig.1 Construction procedure of recombinant plasmid with inducible promoters
Fig.2 PCR of promoter Pgrac (a) and restriction digestion (b) (a) M: DNA marker; 1: PCR verification of Pgrac (b) M1、M2: DNA marker; 1: pMA5-leudh digested with BamH I; 2: pW1 (PHpaII-Pgrac) double digested with BamH I and Nde I
Fig.3 Cell growth curves (a) and extracellular enzyme activity curves of different recombinants with inducible promoters (b)
重组菌 培养时间(h) 胞外活性(U/ml) 胞内活性(U/ml) 总酶活(U/ml)
B. subtilis 168/pW1 (PHpaII-Pgrac) 24 1.87 18.61 20.58
B. subtilis 168/pW2 (PHpaII-Pglv-M1) 32 0.82 0.54 1.36
Table 2 Comparison of LeuDH activity by recombinants contained inducible promoter Pgrac and Pglv-M1
Fig.4 SDS-PAGE analysis of LeuDH extracellular activity contained inducible promoters M: Protein marker (Low); 1: B. subtilis 168/pMA5-leudh (PHpaII) (control); 2: Culture supernatants of B. subtilis 168/pW2 (PHpaII-Pglv-M1); 3: Culture supernatants of B. subtilis 168/pW1 (PHpaII-Pgrac)
Fig.5 PCR of consistant promoters (a) and restriction digestion (b) (a) M: marker; 1: PCR verification of PamyQ; 2: PCR verification of P43; 3: PCR verification of PHpaII (b) M: marker; 1: pMA5-leudh digested with BamH I (control); 2: pW3 (PHpaII-P43) double digested with BamH I and Nde I; 3: pW5 (PHpaII-PHpaII) double digested with BamH I and Nde I; 4: pW6 (PHpaII-PamyQ) double digested with BamH I and Nde I
Fig.6 Cell growth curves (a) and extracellular enzyme activity curves of different recombinants with constitutive promoters (b)
重组菌 培养时间(h) 胞外活性(U/ml) 胞内活性 (U/ml) 总酶活 (U/ml)
B. subtilis 168/pW3(PHpaII-P43) 48 0.99 2.52 3.51
B. subtilis 168/pW4(PHpaII-Plaps) 48 0.32 3.69 4.01
B. subtilis 168/pW5(PHpaII-PHpaII) 48 0.80 1.11 1.91
B. subtilis 168/pW6(PHpaII-PamyQ) 48 31.24 36.89 68.31
Table 3 Comparison of LeuDH activity by recombinants contained different constitutive promoters
Fig.7 SDS-PAGE analysis of LeuDH extracellular activity contained consistive promoters M: Protein marker (Low); 1: Culture supernatants of B. subtilis 168/pMA5-leudh (PHpaII) (control); 2: Culture supernatants of B. subtilis 168/pW3 (PHpaII-P43); 3: Culture supernatants of B. subtilis 168/pW4 (PHpaII-Plaps); 4: Culture supernatants of B. subtilis 168/pW5 (PHpaII-PHpaII); 5: Culture supernatants of B. subtilis 168/pW6 (PHpaII-PamyQ)
Fig.8 Construction procedure of recombinant plasmid pW6I (PHpaII-PamyQ, AmyQ)
Fig. 9 Gene overlap PCR (a) and restriction digestion of plasmids pW6I (PHpaII-PamyQ, AmyQ) (b) (a) M1, M2: Marker; 1: PCR verification of AmyQ; 2: PCR verification of leudh; 3: PCR verification of AmyQ-leudh (b) M: Marker; 1: pW6I (PHpaII-PamyQ, AmyQ) double digested with BamH I and Sal I; 2: pW6 (PHpaII-PamyQ) double digested with BamH I and Sal I (control)
Fig.10 Restriction digestion of recombinant plasmids with double promoters and signal peptides M: Marker; 1: pMA5-leudh double digested with BamH I and Sal I (control); 2: pM6III (PHpaII-PamyQ, PhoD) double digested with BamH I and Sal I; 3: pW6II (PHpaII-PamyQ, SacB) double digested with BamH I and Sal I; 4: pW6IV (PHpaII-PamyQ, YwbN) double digested with BamH I and Sal I
Fig.11 Cell growth curves (a) and extracellular enzyme activity curves of different recombinants with dual promoter and signal peptides (b)
重组菌 胞外酶活(U/ml) 胞内酶活(U/ml) 总酶活(U/ml)
B. subtilis168/pW6I (PHpaII-PamyQ, AmyQ) 0.44 0.65 1.09
B. subtilis168/pW6II (PHpaII-PamyQ, SacB) 1.69 3.47 5.16
B. subtilis168/pW6III (PHpaII-PamyQ, PhoD) 6.49 18.09 24.58
B. subtilis168/pW6IV (PHpaII-PamyQ, YwbN) 21.76 31.60 53.36
Table 4 LeuDH activity of B. subtilis168/pW6 with different signal peptides
Fig. 12 Effect of no feeding (a) and feeding (b) on enzyme production by recombinant
[1]   Li J, Pan J, Zhang J , et al. Stereoselective synthesis of L-tert-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum. Jourmal of Molecular Catalysis B: Enzymatic, 2014,105(7):11-17.
[2]   Cooper A J, Conway M, Hutson S M . A continuous 96-well plate spectrophotometric assay for branched-chain amino acid aminotransferases. Analytical Biochemistry, 2002,308(1):100-105.
doi: 10.1016/S0003-2697(02)00243-9 pmid: 12234469
[3]   Wendel U, Gonzales J, Hummel W , et al. Neonatal screening for maple syrup urine disease by an enzyme-mediated colorimetric method. Clinica Chimica Acta, 1993,219(1-2):105-111.
doi: 10.1016/0009-8981(93)90201-E pmid: 8306450
[4]   Ohshima T, Misono S, Soda K . Determination of branched-chain L-amino acids and their keto-analogs with leucine dehydrogenase. Agricultural and Biological Chemistry, 1978,42(10):1919-1922.
doi: 10.1271/bbb1961.42.1919
[5]   Chiang C J, Chen P T, Chao Y P . Secreted production of renilla luciferase in Bacillus subtilis. Biotechnology Progress, 2010,26(2):589-594.
[6]   Paccez J D, Luiz W B ,Sbrogio-Almeida M E , et al.Stable episomal expression system under control of a stress inducible promoter enhances the immunogenicity of Bacillus subtilis as a vector for antigen delivery. Vaccine, 2006,24(15):2935-2943.
doi: 10.1016/j.vaccine.2005.12.013 pmid: 16503367
[7]   Zyprian E, Matzura H . Characterization of signals promoting gene expression on the Staphylococcus aureus plasmid pUB110 and development of a gram-positive expression vector system. DNA, 1986,5(3):219-225.
doi: 10.1089/dna.1986.5.219 pmid: 3013549
[8]   Yang M M, Zhang W, Ji S , et al. Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system. PloS One, 2013,8(2):e56321.
doi: 10.1371/journal.pone.0056321 pmid: 23409173
[9]   Gupta M, Rao K K . Phosphorylation of DegU is essential for activation of amyE expression in Bacillus subtilis. Journal of Biosciences, 2014,39(5):747-752.
doi: 10.1007/s12038-014-9481-5 pmid: 25431404
[10]   Kim L, Mogk A, Schumann W . A xylose-inducible Bacillus subtilis integeration vector and its applicaton. Gene, 1996,181(1-2):71-76.
[11]   Phan T T, Nguyen H D, Schumann W . Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. Journal of Biotechnology, 2012,157(1):167-172.
doi: 10.1016/j.jbiotec.2011.10.006 pmid: 22100269
[12]   Hartl B, Wehrl W, Wiegert T , et al. Development of a new integration site within the Bacillus subtilis chromosome and construction of conpatible expression cassettes. Journal of Biotechnology, 2001,183(8):2696-2699.
[13]   Guan C, Cui W, Cheng J , et al. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis. New Biotechnology, 2016,33(3):372-379.
doi: 10.1016/j.nbt.2016.01.005 pmid: 26820123
[14]   周勇 . 嗜麦芽糖寡养单胞菌脂肪酶LipS在枯草芽孢杆菌中的高效分泌表达. 杭州: 浙江大学, 2015.
[14]   Zhou Y . High level secretion expression of a lipase from Stenotrophomonas maltophilia in Bacillus subtilis. Hangzhou: Zhejiang University, 2015.
[15]   夏雨, 成玉梁, 李达倩 , 等. 枯草芽孢杆菌分泌载体构建及其对脂肪酶A的分泌表达. 安徽农业科学, 2011,39(30):18435-18437.
[15]   Xia Y, Cheng Y L, Li D Q , et al. Construction of secretory expression vectors for Bacillus subtilis and secretion of lipase A. Journal of Anhui Agriculture, 2011,39(30):18435-18437.
[16]   王男, 金吕华, 张玲 , 等. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究. 中国生物工程杂志, 2018,38(4):46-53.
[16]   Wang N, Jin L H, Zhang L , et al. The Effect of signal peptides on the expression of leucine dehydrogenase and enzymatic properties in Bacillus subtilis. China Biotechnology, 2018,38(4):46-53.
[17]   夏雨 . 枯草芽孢杆菌食品级表达系统的构建和分泌表达研究. 无锡: 江南大学, 2007.
[17]   Xia Y . Construction of food-grade expression systems and study of protein secretion in Bacillus subtilis. Wuxi: Jiangnan University, 2007.
[18]   Kang Z, Su L, Duan X , et al. High-level extracellular protein production in Bacillus subtilis, using an optimized dual-promoter expression system. Microbial Cell Factories, 2017,16(1):32.
doi: 10.1186/s12934-017-0649-1 pmid: 28219382
[1] HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems[J]. China Biotechnology, 2021, 41(5): 87-93.
[2] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[3] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[4] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[5] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[6] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.
[7] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[8] CHEN Long-guan, QIN Jin-hong, HUANG Yun-na, MAI Jun-xin, XIE Qiu-ling. Optimized Signal Peptides Sequences for the Development of High Expressing McAbs[J]. China Biotechnology, 2016, 36(3): 77-81.
[9] ZHOU Yong, XU Gang, YANG Li-rong, WU Jian-ping. Effects of Signal Peptides's Optimization on the Secretion of Lipase S in Bacillus subtilis[J]. China Biotechnology, 2015, 35(9): 42-49.
[10] CHEN Ke, HUANG Xiao, LU Lei, XING Yun, HOU Jing, WU Jie, LIU Jing-jing. Comparison of celY Gene from Erwinia chrysanthemi Expression in Escherichia coli Driven by Different Regulatory Elements[J]. China Biotechnology, 2012, 32(02): 24-28.
[11] JIA Qi-Yu, WANG Yu-Guang, SUN Jian-Bei, LEI Xue-Hua, GU Wen-Liang. Isolation of a Strain of Endophytic Bacteria against Banana Fusarium Wilt and Activity Analysis of Signal Peptide of its Chitinase[J]. China Biotechnology, 2010, 30(09): 24-30.
[12] HU E-Dong, TAO Dong-Sheng. Construction and Determination of an Episomal Secreting Expression Vector:pYES2/CT/α-factor for Saccharomyces cerevisiae[J]. China Biotechnology, 2009, 29(12): 49-53.
[13] . Analysis and Prediction of Secreted Proteins in Escherichia coli UTI89[J]. China Biotechnology, 2007, 27(7): 100-105.
[14] . Efficient Secretion of Recombinant PEX in COS7 Cells[J]. China Biotechnology, 2007, 27(5): 1-5.