Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (5): 28-37    DOI: 10.13523/j.cb.20170504
    
Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond
YAO Chang-hong1, WU Pei-chun1, CAO Xu-peng1, LIU Jiao1,2, JIANG Jun-peng1,2, XUE Song1
1. Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(1678KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Temperature is an important factor affecting biomass productivity in large-scale cultivation of Arthrospira. To improve Arthrospira production, it is crucial to screen strains with high productivity and excellent temperature-tolerance ability. Two strains Arthrospira sp. DICP-D (D) and Arthrospira sp. DICP-F (F) were isolated and identified from full-scale Arthrospira cultivation raceway pond. Although strain D and strain F displayed significant difference in morphology, they shared closest phylogenetic relationship among the existing Arthrospira strains with accessible 16S rRNA gene information. Under normal conditions, strain D and strain F harbor almost the same biomass compositions, and they also accumulated identical carbohydrate content in cell under nitrogen stress or low temperature stress conditions. However, the biomass productivity in strain D was 33% to 230% higher than that in strain F under the same cultivation conditions tested. Strain D showed 1.1 times better tolerance ability towards high temperature stress than strain F. The biomass productivity in strain D under 41℃ and 15℃ could be maintained at 73% and 61%, respectively, of that under normal temperature, demonstrating that strain D had good tolerance ability towards temperature stress. Strain D held more efficient photoprotection mechanism than strain F did, which endowed it better ability to acclimate to stressful conditions. The excellent biomass productivity and stress tolerance ability in strain D could make it applicable with great potential in outdoor large-scale Arthrospira cultivation.



Key wordsTemperature      Stress tolerance      Algal strain selection      Arthrospira     
Received: 22 December 2016      Published: 25 May 2017
ZTFLH:  Q939.97  
Cite this article:

YAO Chang-hong, WU Pei-chun, CAO Xu-peng, LIU Jiao, JIANG Jun-peng, XUE Song. Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond. China Biotechnology, 2017, 37(5): 28-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170504     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I5/28

[1] Sili C, Torzillo G, Vonshak A. Ecology of Cyanobacteria Ⅱ:Their Diversity in Space and Time. 1st ed. Dordrecht:Springer Netherlands, 2012:677-705.
[2] Belay A. Biology and Industrial Production of Arthrospira (Spirulina), Handbook of Microalgal Culture. 2nd ed. New York:John Wiley & Sons, Ltd, 2013:339-358.
[3] Aikawa S, Izumi Y, Matsuda F, et al. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresource Technology, 2012, 108:211-215.
[4] Möllers K B, Cannella D, Jørgensen H, et al. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels, 2014, 7(1):64.
[5] Chen J, Wang Y, Benemann J R, et al. Microalgal industry in China:challenges and prospects. Journal of Applied Phycology, 2016, 28(2):1-11.
[6] Lu Y M, Xiang W Z, Wen Y H. Spirulina (Arthrospira) industry in Inner Mongolia of China:current status and prospects. Journal of Applied Phycology, 2011, 23(2):265-269.
[7] 曾文炉, 丛威, 蔡昭铃, 等. 螺旋藻的营养方式及光合作用影响因素. 植物学报, 2002, 19(1):70-77. Zeng W L, Cong W, Cai Z L, et al. Reviews on the trophic modes and factors affecting photosynthesis of Spirulina. Chinese Bulletin of Botany, 2002, 19(1):70-77.
[8] 杨学文, 李博生, 王志忠, 等. 温度对3种产业化螺旋藻生长及蛋白质含量影响的研究. 内蒙古农业大学学报(自然科学版), 2006, 27(2):60-64. Yang X W, Li B S, Wang Z Z, et al. Effect of temperatues on growth and protein content of three species of Spirulina (Arthrospira). Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2006, 27(2):60-64.
[9] 张学成, 薛命雄. 我国螺旋藻产业的现状和发展潜力. 生物产业技术, 2012,3(2):47-53. Zhang X C, Xue M X, The current status and developmental potential of Arthrospira industry in China. Biotechnology & Business, 2012, 3(2):47-53.
[10] 巩东辉. 鄂尔多斯高原碱湖钝顶螺旋藻对低温、强光的响应. 呼和浩特:内蒙古农业大学, 农学院,2013. Gong D H. The Response of Spirulina platensis to Low Temperature and High Light in an Alkali Lake of the Erdos Plateau. Hohbot:Inner Mongolia Agricultural University, Agricultural College,2013.
[11] 王妮, 王素英, 师德强. 耐低温螺旋藻新品系的诱变选育. 安徽农业科学, 2008, 36(29):12552-12553. Wang N, Wang S Y, Shi D Q. Mutant screening of low temperature tolerence strain of Spirulina. Journal of Anhui Agricultural Sciences, 2008, 36(29):12552-12553.
[12] 殷春涛, 胡鸿钧, 李夜光, 等. 中温螺旋藻新品系的选育研究. 植物科学学报, 1997, (3):250-254. Yin C T, Hu H J, Li Y G, et al. Studies on middle temperature strains selection of Spirulina platensis. Journal of Wuhan Botanical Research, 1997, (3):250-254.
[13] 李正娟, 常蓉, 石光波, 等. 螺旋藻规模生产优良藻株的选育. 食品工业科技, 2016, (14):210-218. Li Z J, Chang R, Shi G B, et al. Selection and breeding of fine Spirulina strains of large-scale production. Science and Technology of Food Industry, 2016, (14):210-218.
[14] Yao C, Pan Y, Lu H, et al. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis. Bioresource Technology, 2016, 212:26-34.
[15] Yao C, Ai J, Cao X, et al. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresource Technology, 2012, 118(8):438-444.
[16] Smith P K, Krohn R I, Hermanson G T, et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 1985, 150(1):76-85.
[17] Yao C H, Ai J N, Cao X P, et al. Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Applied Microbiology and Biotechnology, 2013, 97(13):6099-6110.
[18] Chen C Y, Kao P C, Tsai C J, et al. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology, 2013, 145(4):307-312.
[19] Liu J, Liu Y, Wang H, et al. Direct transesterification of fresh microalgal cells. Bioresource Technology, 2015, 176:284-287.
[20] Murchie E H, Lawson T. Chlorophyll fluorescence analysis:a guide to good practice and understanding some new applications. Journal of Experimental Botany, 2013, 64(13):3983-3998.
[21] Scheldeman P, Baurain D, Bouhy R, et al. Arthrospira (‘Spirulina’) strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiology Letters, 1999, 172(2):213-222.
[22] Cirulis J T, Scott J A, Ross G M. Management of oxidative stress by microalgae. Canadian Journal of Physiology & Pharmacology, 2013, 91(1):15-21.
[23] Minhas A K, Peter H, Barrow C J, et al. A Review on the Assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology, 2016, 7:546.
[24] Couso I, Vila M, Vigara J, et al. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. European Journal of Phycology, 2012, 47(3):223-232.
[25] Singh S C, Sinha R P, Häder D P. Role of lipids and fatty acids in stress tolerance in Cyanobacteria. Acta Protozoologica, 2002, 41(4):297-308.
[26] Wang H T, Yao C H, Liu Y N, et al. Identification of fatty acid biomarkers for quantification of neutral lipids in marine microalgae Isochrysis zhangjiangensis. Journal of Applied Phycology, 2015, 27(1):249-255.
[27] Suzuki E, Ohkawa H, Moriya K, et al. Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Applied & Environmental Microbiology, 2010, 76(10):3153-3159.
[28] Gründel M, Scheunemann R, Lockau W, et al. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology, 2012, 158(12):3032-3043.
[29] Vonshak A, Novoplansky N. Acclimation to low temperature of two Arthrospira platensis (cyanobacteria) strains involves down-regulation of PSⅡ and improved resistance to photoinhibition. Journal of Phycology, 2008, 44(4):1071-1079.
[30] Maclde O, Mpc M, Robbs P G, et al. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International, 1999, 7(4):261-275.
[31] Cohen Z, Vonshak A, Richmond A. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry, 1987, 26(8):2255-2258.

[1] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[2] Ya-nan YANG,Chao SUN,Hao-lin CUI,Xin ZHAO. Effect of Mutation of M145F / F146M on the Photocycle of Photoreceptors Bacteriorhodopsin and Archaerhodopsin 4[J]. China Biotechnology, 2019, 39(1): 21-30.
[3] YUAN Xiao-chuan, LIAN Fang, ZHAO Yin-nong, CHEN Chuang, HUANG Shan, LI Ke-zhi, ZENG Ai-ping, HE Jian-bo, WU Guo-bin. Elevated Temperature Induced Acceleration of Electrophoretic Tissue Clearing Process of Rat Liver Tissue[J]. China Biotechnology, 2017, 37(9): 65-70.
[4] YANG Xia, LI Ru-ying. A Review on Effects of Seed Sludge Pretreatment and Fermentation Temperature on Dark Fermentative Hydrogen Production[J]. China Biotechnology, 2017, 37(11): 132-140.
[5] LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2[J]. China Biotechnology, 2016, 36(4): 110-115.
[6] CAO Xu-peng, AI Jiang-ning, LIU Ya-nan, ZHOU Jian-nan, WU Pei-chun, XUE Song. Mutagenic Screening Method of Isochrysis zhangjiangensis by Atmospheric and Room Temperature Plasmas[J]. China Biotechnology, 2014, 34(12): 84-90.
[7] QIAO Chang-sheng, ZHAO Nan, SHI Man-man, ZHU Ming, LI Xue. Mutation Screening of Production Strains of Spinosad Based on Ribosome Engineering Theory through ARTP[J]. China Biotechnology, 2014, 34(1): 71-78.
[8] LIN Heng, LI Jun-ming, GE Gao-shun, ZHANG Li-chao, SUN Li-hui, HU Xue-jun. Influence of PEG to ELP[I]40 Inverse Temperature Transition[J]. China Biotechnology, 2013, 33(5): 81-85.
[9] ZHAO Wei, YIN Jing, ZHAN Ya-guang, REN Chun-lin, WANG Yan, MA Hong-si, SU Xin. Effects of Temperature Stress on the Accumulating of Triterpenes and Defense Enzyme Activity in Suspension Cells of Birch (Betula platyphylla Suk.)[J]. China Biotechnology, 2013, 33(2): 34-40.
[10] GUO Sen, WU Dan, CHEN Sheng, WU Jing, CHEN Jian. Fermentation Optimization on Flask-scale and Secretional Expression of Recombinant Cutinase-CBM in E.coli[J]. China Biotechnology, 2011, 31(9): 55-61.
[11] CHENG Xiao-jie, QIU Tian-lei, WANG Min, ZHANG Shu, CAI Jin-guo, GAO Jun-lian. Screening of Microbial Community in Biogas Fermentation under Low Temperature and Construction of its Metagenome Library[J]. China Biotechnology, 2010, 30(11): 50-55.
[12] HUANG Kai-Zong, WANG Wen-Xing, ZHANG Guang-E. Advances in Applications of Elastin-like Polypeptides in Biomedical Materials[J]. China Biotechnology, 2010, 30(05): 128-132.
[13] JIANG Na, WANG Yan-Chun, MA Zhi-Hong, LUO Lin, LIU Chun-Jie. A Novel Temperatrue Sensitive Plasmid-based Method for Deletion of Chromosomal Genes[J]. China Biotechnology, 2010, 30(03): 85-89.
[14] LI Min . Increasing the thermotolerance of E.coli with expression of eIF-5A from Rosa Chinenses.[J]. China Biotechnology, 2008, 28(1): 18-24.
[15] . Application of a Two-stage Temperature Control Strategy for CF66I in Batch Fermentation By Burkholderia cepacia CF-66[J]. China Biotechnology, 2007, 27(4): 66-70.