Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (8): 35-40    DOI: 10.13523/j.cb.20140806
    
Comparison of Two Aspergillus niger Mutant and Wild Strains Based on q-rate and Flux Balance Analysis
CHEN Xiang-fen, LU Hong-zhong, TANG Wen-jun, TANG Yin, CHU Ju, ZHUANG Ying-pin, ZHANG Si-liang
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Download: HTML   PDF(1395KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aspergillus niger is widely used in industrial enzyme production for its excellent protein expression and secretion capacity. The differences of physiological behaviors and metabolic flux distribution between Aspergillus niger mutant and wild strains under same cultivation conditions are investigated, so as to determine limited factors in glucoamylase production. Based on kinetic analysis, it is confirmed that the mutant strain gets a higher maximum specific growth rate (+30%), a lower by-product productivity (-90%) and a higher substrate uptake efficiency (+30%), which implies significant differences in carbon distribution and substrate usage efficiency between these two strains. By applying Flux Balance Analysis (FBA), it is found that supplies of reducing power and ribose are main factors which effect cell growth. What's more, precursor amino acids is confirmed to be the main limited factor in glucoamylase production. These conclusions provide significances for subsequent bioprocess optimization and strain gene modification.



Key wordsAspergillus niger      Glucoamylase      Flux balance analysis      By-product     
Received: 05 May 2014      Published: 25 August 2014
ZTFLH:  Q936  
Cite this article:

CHEN Xiang-fen, LU Hong-zhong, TANG Wen-jun, TANG Yin, CHU Ju, ZHUANG Ying-pin, ZHANG Si-liang. Comparison of Two Aspergillus niger Mutant and Wild Strains Based on q-rate and Flux Balance Analysis. China Biotechnology, 2014, 34(8): 35-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140806     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I8/35

[1] Galbraith J C, Smith J E. Sporulation of Aspergillus niger in submerged liquid culture. Journal of General Microbiology, 1969, 59(1): 31-45.
[2] David H, Zçelik I S, Hofmann G, et al. Analysis of Aspergillus nidulans metabolism at the genome-scale. Bmc Genomics, 2008, 9(1): 163.
[3] Alper H, Jin Y-S, Moxley J, et al. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metabolic Engineering, 2005, 7(3): 155-164.
[4] Mukhopadhyay A, Redding A M, Rutherford B J, et al. Importance of systems biology in engineering microbes for biofuel production. Current Opinion in Biotechnology, 2008, 19(3): 228-234.
[5] Pluschkell S, Hellmuth K, Rinas U. Kinetics of glucose oxidase excretion by recombinant Aspergillus niger. Biotechnology and Bioengineering, 1996, 51(2): 215-220.
[6] Nielsen J, Jorgensen H S. Metabolic control analysis of the Penicillin biosynthetic pathway in a high-yielding strain of Penicillium chrysogenum. Biotechnology Progress, 1995, 11(3): 299-305.
[7] Borodina I, Siebring J, Zhang J, et al. Antibiotic overproduction in streptomyces coelicolor A3 (2) mediated by phosphofructokinase deletion. Journal of Biological Chemistry, 2008, 283(37): 25186-25199.
[8] Gunnarsson N, Eliasson A, Nielsen J. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Molecular Biotechnolgy of Fungal beta-Lactam Antibiotics and Related Peptide Synthetases, 2004, 88(5):137-178.
[9] Gao H J, Du G C, Chen J. Analysis of metabolic fluxes for hyaluronic acid (Ha) production by Streptococcus zooepidemicus. World Journal of Microbiology and Biotechnology, 2006, 22(4): 399-408.
[10] Sauer U, Eikmanns B J. The peppyruvateoxaloacetate node as the switch point for carbon flux distribution in bacteria. Fems Microbiology Reviews, 2005, 29(4): 765-794.
[11] Elik E, alik P, Oliver S G. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: Effects of methanol feeding rate. Biotechnology and Bioengineering, 2010, 105(2): 317-329.
[12] Lasse P, Hansen K, Nielsen J, et al. Industrial glucoamylase fed-batch benefits from oxygen limitation and high osmolarity. Biotechnology and Bioengineering, 2012, 109(1): 116-124.
[13] Melzer G, Dalpiaz A, Grote A, et al. Metabolic flux analysis using stoichiometric models for Aspergillus niger: Comparison under glucoamylase-producing and non-producing conditions. Journal of Biotechnology, 2007, 132(4): 405-417.
[14] Niklas J, Schneider K, Heinzle E. Metabolic flux analysis in Eukaryotes. Current Opinion in Biotechnology, 2010, 21(1): 63-69.
[15] Dromms R, Styczynski M. Systematic applications of metabolomics in metabolic engineering. Metabolites, 2012, 2(4): 1090-1122.
[16] Young J D. Inca: A computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics, 2014, 30(9): 1333-1335.
[17] Antoniewicz M R, Kelleher J K, Stephanopoulos G. Elementary metabolite units (Emu): A novel framework for modeling isotopic distributions. Metabolic Engineering, 2007, 9(1): 68-86.
[18] Weitzel M, Nöh K, Dalman T, et al. 13C flux2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics, 2013, 29(1): 143-145.

[1] WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong. Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures[J]. China Biotechnology, 2017, 37(1): 27-37.
[2] SHI Hui-lin, SUN Jing-chun, ZHANG Rong-kai, GAO Da-qi, WANG Ze-jian, GUO Mei-jin, ZHOU Li-qin, ZHUANG Ying-ping. Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris[J]. China Biotechnology, 2016, 36(3): 68-76.
[3] LI Gang-rui, LI Lin-li, FAN Xang, MENG Yan-fa. Immobilization and Properties of Lipase from Aspergillus niger on Sol-gels,Hydrophobic Supports[J]. China Biotechnology, 2014, 34(4): 78-84.
[4] LI Rui-rui, LIU Dian-lei, YANG Qing, HAO Qiong, JIANG Kai-kai, LI Pi-wu. Optimization of Fermentation Conditions for Glucose Oxidase Production by Aspergillus niger using Response Surface Method[J]. China Biotechnology, 2013, 33(10): 111-116.
[5] LI Ming, LIU Meng, HUANG Yun-yan, ZHOU Li-ying, SUN Xin, LU Fu-ping. Establishment and Optimization of Agrobacterium tumefaciens-mediated Transformation System of Aspergillus niger[J]. China Biotechnology, 2012, 32(01): 56-63.
[6] HUANG Wen, YANG Hong-jiang, QIN Hui-bin. Genetic Analysis of T-DNA Insertion Site and Characterization of One Aspergillus niger Mutant with Low Cellulase Activity[J]. China Biotechnology, 2011, 31(04): 60-64.
[7] QIN Hui-bin, YANG Hong-jiang, HUANG Wen, LI Ling-yan. Expression of cbhB Gene Driven by Promoter glaA in Aspergillus niger[J]. China Biotechnology, 2010, 30(11): 34-38.
[8] LIU Lu, GENG Pei-Pei, ZUO Jie-Zhen, SHI Bi-Gong. Overview on Promoter of Glucoamylase Gene glaB from Aspergillus oryzae[J]. China Biotechnology, 2010, 30(04): 116-119.
[9] . The effects of dilute acid hydrolysate by-products of corn stover on ethanol fermentation of xylose-utilising Saccharomyces cerevisiae 6508-127[J]. China Biotechnology, 2007, 27(7): 61-67.