Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (1): 38-46    DOI: 10.13523/j.cb.20160106
    
De novo Characterization of the Seed Transcriptome of Lepidium apetalum Willd
ZHOU Qian1, ZHAO Hui-xin1, LI Ping-ping1, ZENG Wei-jun1, LI Yan-hong1, GE Feng-wei1, ZHAO Jun-jie1, ZHAO He-ping2
1. Xinjiang Key Laboratory of Special Species Diversity Application and Regulatory, College of Life Science, Xinjiang Normal University, Urumqi 830054, China;
2. Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
Download: HTML   PDF(1111KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lepidium apetalum Willd is an important traditional Chinese medicine. Various active components have been extracted from the Lepidium apetalum. However, the genetic basis for their activity is virtually unknown. The transcriptome of Lepidium apetalum was sequenced using the Illumina HiSeqTM 2000 sequencing platform. The clean reads were then de novo assembled into 40 303 unigenes. 27 935 unigene were annotated by a similarity search against SiX public databases. The results showed that 534 genes were assigned to second metabolic pathway. Among them, 4 unigenes were mapped to the glucosinolate, 19 to flavonoids, stilbenoid, diarylheptanoid, 69 to gingerol shikimate biosynthesis pathways, and 92 unigenes were respectively mapped to the phenylalanine metabolism pathways, suggesting that they are involved in these pathways of pharmaceutically important. Thirteen homologous fragments of key genes identified were referred to these pathways. In addition, a total of 6 304 SSRs were identified from the sequence of transcription, distributed in 5 306 unigenes(15.64%). This work not only provides many valuable basal data for gene cloning and molecular biology research, but also lays the foundation for genetic diversity analysis and development of molecular marker in Lepidium apetalum.



Key wordsSecond metabolism      Transcriptome      Lepidium apetalum Willd      Simple sequence repeat     
Received: 08 September 2015      Published: 11 January 2016
ZTFLH:  Q785  
Cite this article:

ZHOU Qian, ZHAO Hui-xin, LI Ping-ping, ZENG Wei-jun, LI Yan-hong, GE Feng-wei, ZHAO Jun-jie, ZHAO He-ping. De novo Characterization of the Seed Transcriptome of Lepidium apetalum Willd. China Biotechnology, 2016, 36(1): 38-46.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160106     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I1/38

[1] 吴征镒. 中国植物志. 北京:科学出版社,1987:33,57. Wu Z Y. Flora of China. Beijing:Science Press, 1987:33,57.
[2] 冯志毅,王小兰,郑晓珂. 葶苈子的本草考证.世界科学技术中医药现代化,2014, 16(9): 1938-1941. Feng Z Y, Wang X L, Zheng X K, Herbal textual research on semen Lepidii seu Descurainiae. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2014, 16(9): 1938-1941.
[3] 周喜丹,唐力英,周国洪,等. 南北葶苈子的最新研究进展. 中国中药杂志,2014, 39(24): 4699-4708. Zhou X D, Tang L Y, Zhou G H, et al. Advances on Lepidii Semen and Descurainiae Semen. Chinese Journal of Chinese Materia Medica, 2014, 39(24): 4699-4708.
[4] 李红伟,郑晓珂,弓建红,等. 独行菜和播娘蒿化学成分及药理作用研究进展. 药物评价研究,2013, 36(3): 235-240. Li H W, Zheng X K, Gong J H, et al. Research progress in chemical constituents of Lepidium apetalum and Descurainia sophia and their pharmacological activities. Drug Evaluation Research, 2013, 36(3): 235-240.
[5] Kalia R K, Rai M K, Kalia S, et al. Microsatellite mark-ers:an overview of the recent progress in plants. Eu-phytica, 2011, 177(3): 309-334.
[6] Milee A, Neeta S, Harish P. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep, 2008, 27(4): 617-631.
[7] 李小白,向林,罗洁,等. 转录组测序(RNA-seq)策略及其数据在分子标记开发上的应用. 中国细胞生物学报,2013, 35(5): 1-8. Li X B, Xiang L, Luo J, et al. The strategy of RNA-seq, application and development of molecular marker derived form RNA-seq . Chinese Journal of Cell Biology, 2013, 35(5): 1-8.
[8] Li C, Zhu Y, Guo X, et al. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C A Meyer . BMC Genomics, 2013, 14(1): 245.
[9] 王兴春,谭河林,陈钊,等. 基于RNA-Seq技术的连翘转录组组装与分析及SSR分子标记的开发. 中国科学:生命科学,2015, 45(3): 301-310. Wang X C, Tan H L, Chen Z, et al. Assembly and characterization of the transcriptome and development of SSR markers in Forsythia suspensa based on RNA-Seq technology. Science China(Life Sciences), 2015, 45(3): 301-310.
[10] 齐琳洁,龙平,蒋超,等. 黄芩基因组SSR分子标记的开发及遗传多样性分析. 药学学报, 2015, 50(4): 500-505. Qi L J, Long P, Jiang C, et al. Development of microsatellites and genetic diversity analysis of Scutellaria baicalensis Georgi using genomic-SSR markers.Acta Pharmaceutica Sinica, 2015, 50(4): 500-505.
[11] Chen J, Hou K, Qin P, et al. RNA-Seq for gene identification and transcript profiling of three Stevia rebadiana genotypes. BMC Genomics, 2014, 15(1): 571-582.
[12] Zhang N, Zhang H J, Zhao B, et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research, 2014, 56(1): 39-50.
[13] Lv J, Liu P, Gao B, et al. Transcriptome analysis of the Potunus trituberculatus: de novo assembly, growth-related gene identification and marker discovery. PLoS ONE, 2014, 9(4): e94055.
[14] 赵惠新,李群,周晶,等. 短命植物独行菜种子萌发过程对低温的耐受特性. 云南植物研究,2010, 32(5): 448-454. Zhao H X, Li Q, Zhou J, et al. The characteristics of low temperature tolerance during seed germination of the ephemeral plant Lepidium apetalum (Cruciferae). Acta Botanica Yunnanica, 2010, 32(5): 448-454.
[15] Lopez-Molina L, Mongrand S, McLachlin D T, et al. ABI5 acts downstream of ABI3 to execute an ABA- dependent growth arrest during germination. Plant J, 2002, 32(3): 317-328.
[16] Rajjou L, Gallardo K, Debeaujon I, et al. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol, 2004, 134(4): 1598-1613.
[17] Rajjou L, Belghazi M, Huguet R, et al. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms . Plant Physiol. 2006, 141(3): 910-923.
[18] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652.
[19] Conesa A, Götz S, García-Gómez J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21(18): 3674-3676.
[20] Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 2006, 34(suppl. 2): W293-W297.
[21] Yatusevich R, Mugford S G, Matthewman C, et al. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Plant Journal, 2010, 62(1): 1-11.
[22] 邢文,金晓玲. 调控植物类黄酮生物合成的MYB转录因子研究进展. 分子植物育种,2015, 13(3): 689-696. Xing W, Jin X L. Recent advances of MYB transcription factors involved in the regulation of flavonoid biosynthesis. Molecular Plant Breeding, 2015, 13(3): 689-696.
[23] Hanhineva K, Kokko H, Siljanen H, et al. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria×ananassa). Journal of Experimental Botany, 2009, 60(7): 2093-2106.
[24] Ehlting J, Hamberger B, Million-Rousseau R, et al. Cytochromes P450 in phenolic metabolism. Phytochem Rev, 2006, 5(2): 239-270.
[25] Ralston L, Yu O. Metabolons in volving plant cytochrome P450s. Phytochem Rev, 2006, 5(2): 459-472.
[26] Bourgaud F, Hehn A, Larbat R, et al. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev, 2006, 5(2): 293-308.
[27] Coon M J. Cytochrome P450: nature's most versatile biological catalyst. Annual Review of Pharmacology and Toxicology, 2005, 45(1): 1-25.
[28] Hao D C, Ma P, Mu J, et al.De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum. Science China(Life Sciences), 2012, 55(5): 452-466.
[29] Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics, 2010, 11: 262.
[30] 曹纬国,刘志勤,邵云,等. 黄酮类化合物药理作用的研究进展. 西北植物学报,2003, 23(12): 2241-2247. Cao W G, Liu Z Q, Shao Y, et al. A progress in pharmacological research of flavonoids. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(12): 2241-2247.
[31] 康亚兰,裴瑾,蔡文龙,等. 药用植物黄酮类化合物代谢合成途径及相关功能基因的研究进展. 中草药,2014, 45(9): 1336-1341. Kang Y L, Pei J, Cai W L, et al. Research progress on flavonoid metabolic synthesis pathway and related function genes in medicinal plants. Chinese Traditional and Herbal Drugs, 2014, 24(9): 1336-1341.
[32] 何水林,郑金贵,林明,等. 植物芪类次生代谢物的功能、合成调控及基因工程研究进展. 农业生物技术学报,2004, 12(1): 102-108. He S L, Zheng J G, Lin M, et al. Advances of biological function, regulatory mechanism of biosynthesia and genetic engineering of stillbenes in plants. Journal of Agricultural Biotechnology, 2004, 12(1): 102-108.
[33] 褚洪标,曾红,梁生林,等. 二岐马先蒿苯丙素类活性成分研究. 中草药, 2014, 45(9): 1223-1227. Chu H B, Zeng H, Liang S L, et al. Phenylpropanoids constituents of Pedicularis dichotoma. Chinese Traditional and Herbal Drugs, 2014, 45(9): 1223-1227.
[34] 王毓杰,谭荣,周礼仕,等. 长毛风毛菊中苯丙素类化学成分研究. 中药材, 2015, 38(1): 101-103. Wang Y J, Tan R, Zhou L S, et al. Phenylpropanoids from Saussureae hieracioides. Journal of Chinese Medicinal Material, 2015, 38(1): 101-103.
[35] Kuete V. Health Effects of Alkaloids from African Medicinal Plants. America:Toxicological Survey of African Medicinal Plants. 2014: 611-633.
[36] 张利达,唐克轩. 植物EST-SSR标记开发及其应用. 基因组学与应用生物学, 2010, 29(3): 534-541. Zhang L D, Tang K X. Development of plant EST-SSR markers and its application. Genomics and Applied Biology, 2010, 29(3): 534-541.
[37] 王森,张震,姜倪皓,等. 半夏转录组中的SSR位点信息分析. 中药材, 2014, 37(9): 1567-1570. Wang S, Zhang Z, Jiang N H, et al. SSR Informationin transcriptome of Pinellia ternate. Journal of Chinese Medicinal Materials, 2014, 37(9): 1567-1570.
[38] 王东,曹玲亚,高建平. 党参转录组中SSR位点信息分析. 中草药,2014, 45(16): 2390-2394. Wang D, Cao L Y, Gao J P. Data mining of simple sequence repeats in Codonopsis pilosula transcriptome, Chinese Traditional and Herbal Drugs, 2014, 45(16): 2390-2394.
[39] 杨维泽,金航,赵振玲,等. 西洋参EST资源的SSR信息分析. 西南农业学报,2011, 24(1): 275-278. Yang W Z, Jin H, Zhao Z L, et al. Analysis of SSR Informationin EST Resource of Panax quinquefolium L.. Southwest China Journal of Agricultural Sciences, 2011, 24(1): 275-278.

[1] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[2] HE Guan-rong,HE Bi-zhu,WU Sha-sha,SHI Jing-shan,CHEN Ji-shuang,LAN Si-ren. Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis[J]. China Biotechnology, 2018, 38(12): 57-64.
[3] SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei. Transcriptome Analysis of Cadmium Exposed Jatropha curcas[J]. China Biotechnology, 2016, 36(4): 69-77.
[4] AO Yan, MA Lv-yi, HAN Shu-wen, YANG Xiao-hui. Transcriptome Analysis for Xanthoceras sorbifolia Bunge Based on High-throughput Sequencing Technology[J]. China Biotechnology, 2015, 35(7): 22-29.
[5] LI Zhen, LIU Zhao-yu, XU Dan, CHEN Ting, MENG Zan, TANG Yong, PENG Yan. Astrocyte Promotes Oligodendrocyte Precursor Cell Proliferating through Connexion CX47[J]. China Biotechnology, 2015, 35(12): 21-29.
[6] ZHANG Nan, SUN Gui-ling, DAI Jun-gui, YANG Yan-fang, LIU Hong-wei, QIU De-you. Sequencing and Analysis of the Transcriptome of Ginkgo biloba L. Cells[J]. China Biotechnology, 2013, 33(5): 112-119.
[7] LV Chang-yong, CHEN Chao-yin, GE Feng, LIU Di-qiu, KONG Xiang-jun. The New Development of the Research Method for Molecular Microbial Ecology[J]. China Biotechnology, 2012, 32(08): 111-118.
[8] WANG Xing-chun, YANG Zhi-rong, WANG Min, LI Wei, LI Sheng-cai. High-throughput Sequencing Technology and Its Application[J]. China Biotechnology, 2012, 32(01): 109-114.
[9] LIU Xin-xing, CHEN Chao. De Novo Assembly of Allotetraploid Arabidopsis suecica Transcriptome using Short Reads for Gene Discovery and Marker Identification[J]. China Biotechnology, 2011, 31(7): 45-53.