Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (12): 91-96    DOI: 10.13523/j.cb.20141213
    
Engineering of an Escherichia coli Strain LHY02 for Production of Optically Pure D-lactic Acid from Xylose
LU Hong-ying, HE Hu, LIU Zao, WANG Yong-ze, WANG Jin-hua
Hubei Cooperative Innovation Center for Industrial Fermentation, Key Laboratory of Fermentation Engineering Ministry of Education, Hubei University of Technology, Wuhan 430068, China
Download: HTML   PDF(639KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Efficient utilization of xylose is an import microbial trait for fermentative production of bio-based products using renewable lignocellulosic feedstocks. Escherichia coli WL204 was previously engineered for fermentative production of optically pure L-lactic acid from xylose. E. coli WL204 was reengineered for D-lactic acid production by functionally replacing the l-lactate dehydrogenase gene (ldhL) with a D-lactate dehydrogenase (ldhA), resulting in strain E. coli LHY02. In 10% xylose fermentation test, LHY02 produced 84 g/L D-lactic acid with an optical purity of 99.5% and a volumetric productivity of 0.93 g/L/h.



Key wordsXylose      D-lactate      Engineered Escherichia coli      RED gene replacement techniques     
Received: 08 October 2014      Published: 25 December 2014
ZTFLH:  Q789  
Cite this article:

LU Hong-ying, HE Hu, LIU Zao, WANG Yong-ze, WANG Jin-hua. Engineering of an Escherichia coli Strain LHY02 for Production of Optically Pure D-lactic Acid from Xylose. China Biotechnology, 2014, 34(12): 91-96.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141213     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I12/91


[1] Joshi D S, Singhvi M S, Khire J M, et al. Strain improvement of Lactobacillus lactis for D-lactic acid production., Biotechnol Lett, 2010, 32 (4): 517-520.

[2] Sasaki C, Okumura R, Asakawa A, et al. Effects of washing with water on enzymatic saccharification and d-lactic acid production from steam-exploded sugarcane bagasse, J Mater Cycles Waste Manage, 2012, 14 (3): 234-240.

[3] Zhang Y, Vadlani P V. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation, Bioprocess Biosyst Eng, 2013, 36 (12): 1897-1904.

[4] Okano K, Yoshida S, Tanaka T, et al. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol, 2009, 75 (15): 5175-5178.

[5] Yoshida S, Okano K, Tanaka T, et al. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol, 2011, 92 (1): 67-76.

[6] Okano K, Yoshida S, Yamada R, et al. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantaru. Appl Environ Microbiol, 2009, 75 (24): 7858-7861.

[7] Wang Y, Tian T, Zhao J, et al. Homofermentative production of d-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol Lett, 2012, 34 (11): 2069-2075.

[8] Zhao J, Xu L, Wang Y, et al. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact, 2013, 12: 57.

[9] Wang L, Zhao B, Li F, et al. Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal, Appl Microbiol Biotechnol, 2011, 89 (4): 1009-1017.

[10] Tashiro Y, Kaneko W, Sun Y, et al. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Appl Microbiol Biotechnol, 2011, 89 (6): 1741-1750

[11] Hofvendahl K, Hahn-Hagerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol, 2000, 26 (2-4): 87-107.

[12] Yu C, Cao Y, Zou H, et al. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol, 2011, 89 (3): 573-583.

[13] Zhou L, Tian K M, Niu D D, et al. Improvement of D-lactate productivity in recombinant Escherichia coli by coupling production with growth. Biotechnology Letters, 2012, 34 (6): 1123-1130.

[14] Jia X, Liu P, Li S, et al. D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum. World J Microbiol Biotechnol, 2011, 27 (9): 2117-2124.

[1] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.
[2] MA Ze-lin, LIU Jia-heng, HUANG Xu, CAIYIN Qing-gele, ZHU Hong-ji. Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms[J]. China Biotechnology, 2017, 37(6): 124-133.
[3] CHEN Zhen, CHEN Xian-zhong, ZHANG Li-hua, WANG Jun-hua, SHEN Wei, FAN You. Metabolic Engineering of Candida tropicalis for Xyltiol Production from Xylose Mother Liquor[J]. China Biotechnology, 2017, 37(5): 66-75.
[4] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[5] XU Yong, SHEN Chong, QIU Xing-tian, CAI Peng, HUANG Min-ren, YU Shi-yuan. Screening and Analysis of Genes Related to Xylose Fermentation to Ethanol in Candida tropiclis[J]. China Biotechnology, 2012, 32(11): 61-69.
[6] XU Yong, SHEN Chong, QIU Xing-tian, CAI Peng, HUANG Min-ren, YU Shi-yuan. Screening and Analysis of Genes Related to Xylose Fermentation to Ethanol in Candida tropiclis[J]. China Biotechnology, 2012, 32(11): 61-69.
[7] XU Yong, WANG Xun, ZHU Jun-jun, YONG Qiang, YU Shi-yuan. A New Way for Bioconversion of Xylose in High Efficiency[J]. China Biotechnology, 2012, 32(05): 113-119.
[8] GUO Yong-an, TENG Ya-qun, ZHU Ouhaodi, DAU Yi-chen, ZHA Jing-jing, ZHU Xu, ZENG Xiao, XING Xiao-xue, Mitchell Bieniek, Garrett Flack, LV Ji-hua. Study on the Ability of Butanol Production of Different Bacteria with the Fermentable Sugar[J]. China Biotechnology, 2012, 32(03): 91-99.
[9] . Succinate Production from Escherichia coli Mutant QQS101 Fermentation[J]. China Biotechnology, 2010, 30(10): 0-0.
[10] LI Yi-kui, KANG Jun-hua, KANG Zhen, GENG Yan-ping, WANG Yi-hua, QI Qing-sheng. Succinate Production from Escherichia coli Mutant QQS101 Fermentation[J]. China Biotechnology, 2010, 30(10): 39-43.
[11] HU Wei- Ding-Chi- Yan-Meng- Hu-Lin. Expression, Purification and Enzymatic Characterization of Thermophilic Xylose Isomerase In Escherichia coli[J]. China Biotechnology, 2009, 29(02): 65-70.
[12] . The effects of dilute acid hydrolysate by-products of corn stover on ethanol fermentation of xylose-utilising Saccharomyces cerevisiae 6508-127[J]. China Biotechnology, 2007, 27(7): 61-67.