Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (12): 97-106    DOI: 10.13523/j.cb.20141214
    
Production of 2-Keto-D-Gluconic Acid by Metabolically Engineered Gluconobacter suboxydans
YI Xiu-nan2, LI Tian-ming1, WANG Bei-chen3, LIU Jin-lei1, DU Hong-yan1, FENG Hui-yong1
1. Hebei University of Science and Technology, Shijiazhuang 050018, China;
2. ShanDong University, Jinan 250100, China;
3. Northwest University of Agriculture and Forest, Yangling 712100, China
Download: HTML   PDF(1332KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

2-keto-D-gluconic acid is an important precursor for D-isoascorbic acid and sodium D-isoascorbate, a significant antioxidant and food additive. Gluconobacter suboxydans has lots of oxidases in the periplasmic space and can be used to produce 2-keto-D-gluconic acid through two-step oxidation-reduction reactions: the oxidation from glucose to gluconic acid, catalyzed by the glucose dehydrogenase and the oxidation from gluconic acid to 2-keto-D-gluconic acid, catalyzed by the 2-gluconate dehydrogenas. To inactivate other by-product forming pathways and improving the production of 2-keto-D-gluconic acid, a genetically stable strain by integrating glucose dehydrogenase (gdh) and 2-gluconate dehydrogenase (ga-2-dh) genes into the chromosome of Gluconobacter suboxydans to replace glycerol dehydrogenase (gldh) and sorbitol dehydrogenase (sdh) gene respectively was constructed. By the verifying PCR, color reaction and HPLC, the characteristics of engineered strain indicated that gdh and ga-2-dh gene were strengthened and gldh and sdh gene were knocked out. Using compound medium with 10% glucose as carbon sources, the engineered strain could produce 72.3 g/L 2-keto-D-gluconic acid without by-products 5-keto- gluconic acid after culturing in shake flask for 72 h and its 2-keto-D-gluconic acid production increased 1.4 fold comparing to J12 wild type. Genetically stable strains constructed can metabolize glucose to produce2-keto-D-gluconic acid without the addition of antibiotics which is favorable for the industrial production.



Key words2-Keto-D-Gluconic Acid      Gluconobacter suboxydans      Glucose dehydrogenase      2-gluconate dehydrogenase     
Received: 16 September 2014      Published: 25 December 2014
ZTFLH:  Q789  
Cite this article:

YI Xiu-nan, LI Tian-ming, WANG Bei-chen, LIU Jin-lei, DU Hong-yan, FENG Hui-yong. Production of 2-Keto-D-Gluconic Acid by Metabolically Engineered Gluconobacter suboxydans. China Biotechnology, 2014, 34(12): 97-106.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141214     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I12/97


[1] Wei Z,Yu S L,Sun W J,et al. Research progress on fermentation production of 2-keto-D-gluconic acid. Food Science, 2008,29(8):636-639.

[2] Wei D,Xu J,Sun J,et al. 2-keto gluconic acid production by Klebsiella pneumoniae CGMCC 1.6366. Journal of Industrial Microbiology & Biotechnology,2013,40(6):561-570.

[3] Liu M X,Zhou Q,Chen W P. Present situation and prospect of production technology research and application of erythorbic acid. Science and Technology of Food Industry,2013,34(2):376-381.

[4] Cui F J,Zhao H X,Sun W J,et al. Ultrasound-assisted lipase-catalyzed synthesis of D-isoascorbyl palmitate: Process optimization and kinetic evaluation. Chemistry Central Journal,2013,7(1):180.

[5] 刘程惠,姜爱丽,何煜波,等. 鲜切冬瓜保鲜的研究. 中国食品科学技术学会第八届年会暨第六届东西方食品业高层论坛论文摘要集,2011. Liu C H,Jiang A L,He Y B,et al. Study on preservation of fresh-out wax gourd.Food Summit in China, 2011, 8th Annual Meeting of CIFST Abstracts.

[6] Fiedurek J,Rogalski J. Screening and mutagenesis of moulds for the improvement of glucose oxidase production. Enzyme and Microbial Technology,1986,8(12):734-736.

[7] 陈南南,徐歆,商丰才,等. 不同防腐剂对3种模式腐败菌抑菌效果的比较. 食品科学,2011,32(1):14-18. Chen N N,XU X,Shang F C,et al. Comparative study on bacteriostasis of different preservatives for three typical spoilage bacteria. Food Science,2011,32(1):14-18.

[8] 陈振林,黄华香. 黑芝麻花生糊配方和保藏稳定性研究. 食品工业科技,2011 (8):328-330. Chen Z L,Huang H X. Study on the prescription and storage stability of black sesame paste with peanuts. Science and Technology of Food Industry,2011(8):328-330.

[9] 张炜. 2-酮基-D-葡萄糖酸产生菌的筛选发酵工艺优化及其动力学研究. 杭州:浙江大学,2011. Zhang W. Study on strain isolation,fermentation strategy optimization and fermentation kinetics for 2-keto-D-gluconic acid production. Hangzhong:Zhejiang University,2011.

[10] Nunheimer T D. Conversion of glucose to 2-keto gluconic acid. United States Patent,3255093,1966.

[11] Suzuki Y,Uchida K. Microbiological studies of phytopathogenic bacteria-part I on 2-keto gluconic acid fermentation by the bacteria belonging to the Erwinia amylotora group. Agr Biol Chem,1965,29(5):456-461.

[12] Misenheimer T J,Anderson R F,Lagoda A A,et al. Production of 2-keto-gluconic acid by Serratia macrcescens. Appl Microbiol,1965,13(3):393-396.

[13] Kulka D,Walker T K. The ketogenic activities of Acetobacter species in a glucose medium. Arch Biochem Biophys,1954,50(1):169-179.

[14] Lusta K,Reshetilov A. Physiologieal and biochemical features of gluconobacter oxydans and prospcets of their use in bioteehnology and biosensor systems. Appl Biochem Microbiol,1998,34:307-320.

[15] Chhabra S,Brazil D,Morrissey J,et al. Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiology Open,2013,2(5):717-724.

[16] Hanke T,Nöh K,Noack S,et al. Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H. Applied and Environmental Microbiology,2013,79(7):2336-2348.

[17] Hanke T,Nöh K,Noack S,et al. Glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H: a combined fluxomics and transcriptomics analysis. Applied and Environmental Microbiology,2013,1128(10):03414-12.

[18] Shi L,Li K,Zhang H,et al. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans. Journal of Biotechnology,2014,175(10):69-74.

[19] Wei L,Zhu D,Zhou J,et al. Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δ mgdh strain by mutagenesis. Microbiological Research,2013,169(5):469-475.

[20] Weenk G,Olijve W,Harder W. Ketogluconate formation by gluconobacter species. Appl Microbiol Biotechnol,1984,20:400-405.

[21] Hölscher T,Schleyer U,Merfort M,et al. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology,2008,16(1-2):6-13.

[22] Klasen R,Bringer-meyer S,Sahm H. Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans. Bacteriol,1995,177(10):2637-2643.

[23] Buse R,Qazi G N,Träger M,et al. Influence of dissolved oxygen tension on the production rate of 2,5-diketogluconic acid by Gluconobacter melanogenum. Biotechnology Letters,1990,12(2):111-116.

[24] Ke L G,Dong Z W. Asymmetric oxidation by Gluconobacter oxydans. Applied Microbiology and Biotechnology,2006,70(2):135-139.

[25] Shinagawa E,Matsushite K,Toyama H,et al. Production of 5-keto-D-glueonate by acetic acid bacteria is catalyzed by pyrroloquinoline quinine (PQQ)-dependent membrane-bound D-gluconate dehydrogenase. Mol Catal B,1999,6:341-350.

[26] Prust C,Hoffmeister M,Liesegang H,et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nature Biotechnology,2005,23(2):195-200

[27] 戴宝新,冯惠勇,李天明,等. 利用TAIL-PCR克隆Gluconobacter suboxydans的葡萄糖酸脱氢酶及其生物信息学分析. 食品科学,2013,35(1):194-198. Dai B X,Feng H Y,Li T M,et al. Cloning through TAIL- PCR and bioinformatics analysis of the glucose dehydrogenase gene from Gluconobacter suboxydans. Food Science,2013,35(1):194-198.

[28] Elfari M,Ha S W,Bremus C,et al. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-d-gluconic acid.Applied Microbiology and Biotechnology,2005,66(6):668-674.

[29] 何建明,尹光琳. D-异抗坏血酸钠前体产生菌E54发酵条件的优化.微生物学通报, 1997,24(006):334-337. He J M,Yin G L. Improvement about fermentation condition of E54 producing Ca-2-DKG the precursor of sodium D-isoascorbate. Microbiology China,1997,24(006):334-337.

[1] DU Hong-yan, LI Tian-ming, LIU Jin-lei, FENG Hui-yong. Construct the Uracil Phosphoribosyl Transferase Gene Mutant Strain in Gluconobacter suboxydans for Seamless Genome Editing[J]. China Biotechnology, 2016, 36(7): 64-71.