Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (5): 80-86    DOI: 10.13523/j.cb.20140511
    
Transcriptional Regulation of HIV-1 Gene Expression
YUAN Di1, YANG Yi-shu1, LI Ze-lin1, ZENG Yi1,2
1 College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China;
2 National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
Download: HTML   PDF(666KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Highly active antiretroviral therapy (HAART) can effectively suppress human immunodeficiency virus type 1 (HIV-1) replication and plasma viral load, delay the onset, and improve the life quality and survival time. But interruption of HAART leads to the rapid rebound of plasma viral load. Infected cells harboring HIV-1 proviral DNA, mainly resting memory CD4+T cells, are the obstacle for eradication. The transcriptional activation or suppression state determines the infected cells into productive infection or latent infection. This review discusses the intricate mechanism of the HIV-1 transcriptional regulation, such as the integration site and transcriptional interference, cellular transcription factors interacting with HIV-1 promoter to recruit RNA polymerase, epigenetic regulation of transcription, and trans-activating factor Tat and its associated proteins to promote transcriptional elongation.



Key wordsHuman immunodeficiency virus type 1      Latent infection      Transcriptional regulation      Epigenetic regulation     
Received: 27 January 2014      Published: 25 May 2014
ZTFLH:  Q78  
Cite this article:

YUAN Di, YANG Yi-shu, LI Ze-lin, ZENG Yi. Transcriptional Regulation of HIV-1 Gene Expression. China Biotechnology, 2014, 34(5): 80-86.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140511     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I5/80


[1] Noë A, Plum J, Verhofstede C. The latent HIV-1 reservoir in patients undergoing HAART: an archive of pre-HAART drug resistance. J Antimicrob Chemother, 2005, 55(4): 410-412.

[2] Schröder A R, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell, 2002, 110:521-529.

[3] Han Y, Lassen K, Monie D, et al. Resting CD4+T cells from human immunodeficiency virus type I (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol, 2004, 78:6122-6133.

[4] Lewinski M K, Yamashita M, Emerman M, et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog, 2006, 2:e60.

[5] Meehan A M, Saenz D T, Morrison J H, et al. LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors. PLoS Pathog, 2009, 5:e1000522.

[6] Greger I H, Demarchi F, Giacca M, et al. Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids Res, 1998, 26:1294-1301.

[7] Lenasi T, Contreras X, Peterlin B M. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe, 2008, 4:123-133.

[8] Crampton N, Bonass W A, Kirkham J, et al. Collision events between RNA polymerase in convergent transcription studied by atomic force microscopy. Nucleic Acids Res, 2006, 34(19):5416-5425.

[9] Gallastegui E, Millán-Zambrano G, Terme J M, et al. Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol, 2011, 85(7):3187-3202.

[10] Pereira L A, Bentley K, Peeters A, et al. A compilation of cellular transcription factor interaction with the HIV-1 LTR promoter. Nucleic Acids Res, 2000, 28(3):663-668.

[11] Tacheny A, Michel S, Dieu M, et al. Unbiased proteomic analysis of proteins interacting with the HIV-1 5'LTR sequence: role of the transcription factor Meis. Nucleic Acids Res, 2012, 40(21):e168.

[12] Miller-Jensen K, Skupsky R, Shah P S, et al. Genetic selection for context-dependent stochastic phenotypes: Sp1 and TATA mutations increase phenotypic noise in HIV-1 gene expression. PLoS Comput Biol, 2013, 9(7):e1003135.

[13] Williams S A, Chen L F, Kwon H, et al. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J, 2006, 25(1):139-149.

[14] Coiras M, López-Huertas M R, Rullas J, et al. Basal shuttle of NF-κB/ IκB alpha in resting T lymphocytes regulates HIV-1 LTR dependent expression. Retrovirology, 2007, 4:56.

[15] Kim Y K, Bourgeois C F, Pearson R, et al. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J, 2006, 25(15): 3596-3604.

[16] Bates D L, Barthel K K, Wu Y, et al. Crystal structure of NFAT bound to the HIV-1 LTR tandem kappaB enhancer element. Structure, 2008, 16(5):684-694.

[17] Duverger A, Wolschendorf F, Zhang M, et al. An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. J Virol, 2013, 87(4):2264-2277.

[18] Henderson L J, Narasipura S D, Adarichev V, et al. Identification of novel T cell factor 4 (TCF-4) binding sites on the HIV long terminal repeat which associate with TCF-4, β-catenin, and SMAR1 to repress HIV transcription. J Virol, 2012, 86(17): 9495-9503.

[19] Rohr O, Aunis D, Schaeffer E. COUP-TF and Sp1 interact and cooperate in the transcriptional activation of the human immunodeficiency virus type 1 long terminal repeat in human microglial cells. J Biol Chem, 1997, 272(49):31149-31155.

[20] Jenuwein T, Allis C D. Translating the histone code. Science, 2001, 293:1074-1080.

[21] Legube G, Trouche D. Regulating histone acetylatransferases and deacetylases. EMBO Rep, 2003, 4(10):944-947.

[22] Coull J J, Romerio F, Sun J M, et al. The human factors YY1 and LSF repress the human immunodeficiency virus type-1 long terminal repeat via recruitment of histone deacetylase 1. J Virol, 2000, 74:6790-6799.

[23] Tyagi M, Karn J. CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J, 2007, 26(24): 4985-4995.

[24] du Chéné I, Basyuk E, Lin Y L, et al. Suv39H1 and HP1gamma are responsible for chromatin-mediated V-1 transcriptional silencing and post-integration latency. EMBO J, 2007, 26:424-435.

[25] Ding D, Qu X, Li L, et al. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation. Virology, 2013, 440:182-189.

[26] Kauder S E, Bosque A, Lindqvist A, et al. Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog, 2009, 5:e1000495.

[27] Chávez L, Kauder S, Verdin E. In vivo, in vitro and in silico analysis of methylation of the HIV-1 provirus. Methods, 2011, 53(1):47-53.

[28] Palaclos J A, Pérez-Plñar T, Toro C, et al. Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol, 2012, 86(23):13081-13084.

[29] Rafati H, Parra Maribel, Hakre S, et al. Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLoS Biol, 2011, 9(11):e1001206.

[30] Mahmoudi T. The BAF complex and HIV latency. Transcription, 2012, 3(4):171-176.

[31] Easley R, Carpio L, Dannenberg L, et al. Transcription through the HIV-1 nuleosomes: Effects of the PBAF complex in Tat activated transcription. Virology, 2010, 405(2):322-333.

[32] Sanghvi V R, Steel L F. RNA silencing as a cellular defense against HIV-1 infection: progress and issues. FASEB J, 2012, 26:3937-3945.

[33] Chiang K, Rice A P. MicroRNA-mediated restriction of HIV-1 in resting CD4+ T cells and monocytes. Viruses, 2012, 4:1390-1409.

[34] Omoto S, Fujii Y R. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Viro, 2005, 86:751-755.

[35] Klase Z, Kale P, Winograd R, et al. HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol, 2007, 8:63.

[36] Carpio L, Klase Z, Coley W, et al. microRNA machinery is an integral component of drug-induced transcription inhibition in HIV-1 infection. J RNAi Gene Silencing, 2010, 6(1):386-400.

[37] Hidalgo-Estévez A M, González E, Punzón C, et al. Human immunodeficiency virus type 1 Tat increases cooperation between AP-1 and NFAT transcription factors in T cells. J Gen Viro, 2006, 87(6):1603-1612.

[38] Mahmoudi T, Parra M, Vries R G, et al. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem, 2006, 281(29):19960-19968.

[39] Vardabasso C, Manganaro L, Lusic M, et al. The histone chaperone protein nucleosome assembly protein-1 (Hnap-1) binds HIV-1 Tat and promotes viral transcription. Retrovirology, 2008, 5:8.

[40] Massari S, Sabatini S, Tabarrini O. Blocking HIV-1 replication by targeting the Tat-hijacked transcriptional machinery. Curr Pharm Des, 2013, 19(10):1860-1879.

[41] Ott M, Geyer M, Zhou Q. The control of HIV transcription: Keeping RNA polymerase II on track. Cell Host Microbe, 2011, 10(5):426-435.

[42] Kiernan R E, Vanhulle C, Schiltz L, et al. HIV-1 Tat transcriptional activity is regulated by acetylation. EMBO J. 1999, 18(21):6106-6118.

[43] Col E, Caron C, Seigneurin-Berny D, et al. The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem, 2001, 276(30):28179-28184.

[44] Dorr A, Kiermer V, Pedal A, et al. Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PACF bromodomain. EMBO J, 2002, 21(11):2715-2723.

[45] Pagans S, Pedal A, North B J, et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol, 2005, 3(2):e41.

[46] Crotti A, Lusic M, Lupo R, et al. Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood, 2007, 109(12):5380-5389.

[47] Mosoian A, Teixeira A, High A A, et al. Novel function of prothymosin alpha as a potent inhibitor of human immunodeficiency virus type 1 gene expression in primary macrophages. J Virol, 2006, 80(18):9200-9206.

[48] Jochmann R, Thurau M, Jung S, et al. O-linked N-acetyl-glucosaminylation of Sp1 inhibits the human immunodeficiency virus type 1 promoter. J Virol, 2009, 83(8):3704-3718.

[49] Eberhardy S R, Goncalves J, Coelho S, et al. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J Virol, 2006, 80(6):2873-2883.

[50] Horiba M, Martinez L B, Buescher J L, et al. OKT18, a zinc-finger protein, regulates human immunodeficiency virus type 1 long terminal repeat through two distinct regulatory regions. J Gen Viro, 2007, 88(1):236-241.

[51] Savarino A, Mai A, Norelli S, et al. ‘Shock and kill’effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence. Retrovirology, 2009, 6:52.

[52] Xing S, Siliciano R F. Targeting HIV latency: pharmacologic strategies toward eradication. Drug Discovery Today, 2013, 18(11/12):541-551.

[53] Archin N, Margolis D M. Attacking latent HIV provirus: from mechanism to therapeutic strategies. Curr Opin HIV AIDS, 2006, 1:134-140.

[1] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[2] Kai-ren TIAN,Er-shu XUE,Qian-qian SONG,Jian-jun QIAO,Yan-ni LI. The Research Progress of CRISPR-dCas9 in Transcriptional Regulation[J]. China Biotechnology, 2018, 38(7): 94-101.
[3] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[4] DAI Yu huan, XU Yao, LUO Ying, DAI Yang, SHI Wei lin, XU Yao. The Transcriptional Regulation of Ca2+ Channel Mediated by Myocardin in H9C2 Cell[J]. China Biotechnology, 2016, 36(11): 1-6.
[5] KANG Xue-jun, YANG Yi-shu . Research Progress on in vitro Models of HIV-1 Latency[J]. China Biotechnology, 2015, 35(8): 96-102.
[6] DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Molecular Expression and Regulation of MicroRNA[J]. China Biotechnology, 2011, 31(12): 109-114.
[7] MAO Yi, SUN Ji. Looming of the Era for the Induced Pluripotent Stem Cells by Direct Nuclear Reprogram[J]. China Biotechnology, 2009, 29(08): 124-128.
[8] . Rhizosecretion of HIV-1 recombinant capsid protein from transgenic Lycium barbarum L. hairy roots[J]. China Biotechnology, 2007, 27(2): 53-57.
[9] . Advances of Lentiviral Vectors Design and Application[J]. China Biotechnology, 2006, 26(11): 70-75.