Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (05): 49-56    
研究报告     
拟南芥受Cd2+诱导表达基因的筛选及其在Cd2+胁迫下的功能
曾卫军1,2,王水平1,李小方1,徐萍3,王瑞刚4**
1.华东师范大学生命科学学院 上海 200062
2.新疆师范大学生命科学与化学学院 乌鲁木齐 830054
3.中国科学院上海生命科学信息中心 上海 200031
4.内蒙古农业大学生命科学学院 呼和浩特 010018
A Set of Genes Up-regulated by Cadmium Ions and Their Function under Cadmium Stress in Arabidopsis thaliana
1.School of Life Science, East China Normal University, Shanghai 200062, China
2.College of Life Science and Chemistry, Xinjiang Normal University, Urumqi 830054, China
3.Shanghai Information Center for Life Science,CAS, Shanghai 200031 China
4.College of Life Sciences, Inner Mongolia Agricultural University, Huhhot 010018, China
 全文: PDF(530 KB)   HTML
摘要:

镉是一种毒性很大的重金属。土壤溶液中即使存在极低浓度Cd2+也能对植物造成伤害。早在植物做出结构和代谢的调整以适应逆境之前,由于Cd2+的刺激,植物的基因表达已经发生了变化。这里我们采用一种新的基于引物退火控制技术的差异显示方法来筛选受镉离子诱导表达的基因。获得的19条差异条带代表着18个基因。经过RT-PCR方法验证,其中6个基因确实是受Cd2+诱导表达,包括LEA(胚胎发育晚期丰富蛋白), AtGSTF2(谷胱甘肽-S-转移酶2), AtGSTF6(谷胱甘肽-S-转移酶6), HSP70(热激蛋白70), sHSP17.6B-CI(17.6 kDa 类型 I小分子热激蛋白)和sHSP17.6-CII(17.6 kDa类型II 小分子热激蛋白)。 这些结果有助于研究植物对镉离子胁迫的解毒机制。其中的三个热激蛋白基因的启动子也能考虑用于植物修复。

关键词: 引物退火控制镉离子胁迫胚胎发育晚期丰富蛋白热激蛋白谷胱甘肽-S-转移酶    
Abstract:

Cadmium is a kind of highly toxic heavy metals. Even very low concentration of Cd2+ in soil solutions can result in toxic effects to plants. To survive, plants must change their metabolism to cope with cadmium exposure. Before that a lot of genes had changed their expression. A novel differential display PCR method was adopted that is based on annealing control primers (ACPs) to identify up-regulated genes of Arabidopsis by Cd2+ exposure. Nineteen differentially expressed bands were isolated and sequenced. They represent eighteen genes. Among them, six genes were identified by RT-PCR that they were really induced by cadmium treatment, including LEA(late embryogenesis abundant protein), AtGSTF2 (Glutathione S-transferase 2), AtGSTF6(Glutathione S-transferase 6), HSP70(heat shock protein 70), sHSP17.6B-CI(17.6 kDa class I small heat shock protein) and sHSP17.6-CII(17.6 kDa class II small heat shock protein). The results will help us to understand detoxification mechanism of plant to cadmium. And promoters of these three HSPs could be used for phytoremediation of cadmium pollution.

Key words: ACPCadmium exposure    Late embryogenesis abundant protein    Heat shock protein    Glutathione S-transferase
收稿日期: 2010-01-20 出版日期: 2010-05-25
基金资助:

内蒙古自然科学基金;教育部留学回国人员启动基金

通讯作者: 王瑞刚     E-mail: wungruigang@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾为军
王水平
李小方
徐萍
王瑞刚

引用本文:

曾为军 王水平 李小方 徐萍 王瑞刚. 拟南芥受Cd2+诱导表达基因的筛选及其在Cd2+胁迫下的功能[J]. 中国生物工程杂志, 2010, 30(05): 49-56.

CENG Wei-Jun, WANG Shui-Beng, LI Xiao-Fang, XU Ping, WANG Rui-Gang. A Set of Genes Up-regulated by Cadmium Ions and Their Function under Cadmium Stress in Arabidopsis thaliana. China Biotechnology, 2010, 30(05): 49-56.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I05/49

[1] Sanità di Toppi L, Gabbrielli R.Response to cadmium in higher plants. Environmental and Experimental Botany, 1999,41(2):105130. 
[2] Fusco N, Micheletto L, Giovanni D C, et al. Identification of cadmiumregulated genes by cDNAAFLP in the heavy metal accumulator Brassica juncea L.Journal of Experimental Botany, 2005,56(421): 30173027. 
[3] Vassilev A, Tsonev T, Yordanov I.Physiological response of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis. Environ Pollut, 1998,103:287293. 
[4] Lang M L, Zhang Y X, Chai T Y. Identification of genes upregulated in response to Cd exposure in Brassica juncea L. Gene, 2005,363:151158. 
[5] Sullivan J A, Shirasu K, Deng X W. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet, 2003,4(12): 948958. 
[6] Suzuki N, Koizumi N, Sano H. Screening of cadmium responsive genes in Arabidopsis thaliana. Plant, Cell and Environment, 2001,24(11): 11771188. 
[7] Tocquin P, Corbesier L, Havelange A, et al. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biology, 2003,3: 2. 
[8] Kim Y J, Kwak C I, Gu Y Y, et al. Annealing control primer system for identification of differentially expressed genes on agarose gels. BioTechniques, 2004, 36(3):424426. 
[9] Cui X, Shin M, Lee K,et al. Identification of differentially expressed genes in murine embryos at the blastocyst stage using annealing control primer system. Molecular Reproduction And Development, 2005,70(3):278287. 
[10] Shao H B, Liang Z S, Shao M G. LEA proteins in higher plants: Structure, function, gene expression and regulation.Colloids and Surfaces B: Biointerfaces, 2005, 45(34):131135. 
[11] Singh S, Cornilescu C C, Tyler R C, et al. Solution structure of a late embryogenesis abundant protein(LEA14) from Arabidopsis thaliana, a cellular stressrelated protein. Protein Science, 2005, 14(10):26012609. 
[12] Goyal K, Walton L J, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress. Biochem J,2005, 388, 151157. 
[13] Krüger C, Berkowitz O, Stephan U W, et al. A Metalbinding member of the late embryogenesis abundant protein Family transports iron in the phloem of Ricinus communis. The Journal of Biological Chemistry, 2002,277(28): 2506225069. 
[14] Smith A P, DeRidder B P, Guo W J, et al. Proteomic analysis of Arabidopsis glutathione Stransferases from benoxacor and coppertreated seedlings. The Journal of Biological Chemistry, 2003, 279(25): 2609826104. 
[15] Smith A P, Nourizadeh S D, Peer W A, et al. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione Stransferase that interacts with flaonoids. The Plant Journal, 2003,36(4):433442. 
[16] Lieberherr D, Wagner U, Dubuis P H, et al. The rapid induction of glutathione STransferases AtGSTF2 and AtGSTF6 by avirulent Pseudomonas syringae is the result of combined salicylic acid and ethylene signaling. Plant Cell Physiol,2003, 44(7):750757. 
[17] Hamiltone W, Coleman J S. Heatshock proteins are induced in unstressed leaves of Nicotiana attenuata (Solanaceae) when distant leaves are stressed. American Journal of Botany, 2001, 88(5):950955. 
[18] Sun W N, Bernard C, Cotte B,et al. AtHSP17.6A, encoding a small heatshock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal, 2001,27(5):407415. 
[19] Waters E R, Lee G J, Vierling E. Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot,1996,47(296): 325338. 
[20] Ehrnsperger M, Graber S, Gaestel M, et al. Binding of nonnative protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J,1997,16(2): 221229. 
[21] Lee G J, Roseman A M, Saibil H R, et al. A small heat shock protein stably binds heatdenatured model substrates and can maintain a substrate in a foldingcompetent state. EMBO J,1997, 16(3): 659671. 
[22] Lee G J, Vierling E A. Small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heatdenatured protein. Plant Physiology, 2000,122(1): 189197. 
[23] K renlampi S, Schat H,Vangronsveld,et al. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environmental Pollution, 2000, 107(2):225231. 
[24] Tawa V S, Dinkins R D, Palli S R, et al. Development of a methoxyfenozideresponsive gene switch for applications in plants. The Plant Journal,2006, 45(3):457469.

[1] 孙欢, 贾海洋, 冯旭东, 刘月芹, 李春. 酿酒酵母耐热元器件的筛选[J]. 中国生物工程杂志, 2015, 35(3): 75-83.
[2] 方华, 李灏. 海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用[J]. 中国生物工程杂志, 2014, 34(06): 84-89.
[3] 李荣锋, 于华华, 邢荣娥, 刘松, 李鹏程. 霞水母刺丝囊细胞热激蛋白60(Hsp60)的分离纯化与鉴定[J]. 中国生物工程杂志, 2011, 31(10): 35-38.