Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (9): 105-112    DOI: 10.13523/j.cb.2303011
综述     
芳香族氨基酸脱羧酶研究进展*
刘晴浩1,李陈曦1,包心茹1,祁峰1,2,**()
1 福建师范大学生命科学学院 工业微生物发酵技术国家地方联合工程研究中心 福州 350117
2 2 福建师范大学细胞逆境响应与代谢调控福建省高校重点实验室 福州 350108
Advances in Aromatic L-amino Acid Decarboxylases
LIU Qing-hao1,LI Chen-xi1,BAO Xin-ru1,QI Feng1,2,**()
1 National and Local Joint Engineering Research Center for Industrial Microbial Fermentation Technology, College of Life Science, Fujian Normal University, Fuzhou 350117, China
2 Fujian Provincial Key Laboratory of Cell Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350108, China
 全文: PDF(1697 KB)   HTML
摘要:

芳香族氨基酸脱羧酶(aromatic L-amino acid decarboxylases,AADCs)在生物体内的作用是将芳香族氨基酸脱羧转化为芳香族单胺(aromatic monoamines),磷酸吡哆醛(pyridoxal 5'-phosphate,PLP)是其行使催化功能时必不可少的辅酶。AADCs催化芳香族氨基酸产生的芳香族单胺,主要包括多巴胺、血清素、酪胺、色胺等,这些芳香族单胺在生物体内是维持正常生理功能的神经递质,也是参与合成某些化合物的重要前体,还可作为药物中的活性成分参与治疗多种人类疾病,具有广阔的应用前景。作为生物合成芳香族单胺所必需的酶,有关AADCs的研究也越来越深入,基于AADCs的芳香族单胺生物合成也取得了长足进步。对几种主要AADCs进行综述,为AADCs更好应用于芳香族单胺的生物合成提供参考。

关键词: 芳香族氨基酸脱羧酶芳香族单胺蛋白质结构定向改造    
Abstract:

Aromatic L-amino acid decarboxylase (AADC)’s role in living organisms is to decarboxylate aromatic L-amino acids into aromatic monoamines, and pyridoxal 5'-phosphate (PLP) is an essential coenzyme for its catalytic function. AADCs transform aromatic L-amino acids to aromatic monoamines, mainly including dopamine, serotonin, tyramine, and tryptamine. These aromatic monoamines are neurotransmitters that maintain normal physiological functions in living organisms and are also important precursors involved in the synthesis of some compounds. Futhermore, they can also be used as active ingredients in drugs to participate in the treatment of many human diseases, with promising applications. As the enzymes necessary for the biosynthesis of aromatic monoamines, AADCs have attracted more researches’ attention, and great progress has also been made in the biosynthesis of aromatic monoamines based on AADCs. Here several major AADCs are reviewed to provide references for better applications of AADCs in the biosynthesis of aromatic monoamines.

Key words: Aromatic L-amino acid decarboxylase    Aromatic monoamines    Protein structure    Directed remodelling
收稿日期: 2023-03-04 出版日期: 2023-10-08
ZTFLH:  Q814  
基金资助: * 国家自然科学基金(32272287);国家现代农业(糖料)产业技术体系建设专项(CARS-170501)
通讯作者: ** 电子信箱:f.qi@fjnu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘晴浩
李陈曦
包心茹
祁峰

引用本文:

刘晴浩, 李陈曦, 包心茹, 祁峰. 芳香族氨基酸脱羧酶研究进展*[J]. 中国生物工程杂志, 2023, 43(9): 105-112.

LIU Qing-hao, LI Chen-xi, BAO Xin-ru, QI Feng. Advances in Aromatic L-amino Acid Decarboxylases. China Biotechnology, 2023, 43(9): 105-112.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2303011        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I9/105

图1  不同AADCs催化的反应
图2  CrTDC与PLP的结合
图3  CrTDC催化底物脱羧的反应机制
图4  ADCs系统进化树分析
图5  AADCs氨基酸序列与蛋白质结构的比较
[1] Han S W, Shin J S. Aromatic L-amino acid decarboxylases: mechanistic features and microbial applications. Applied Microbiology and Biotechnology, 2022, 106(12): 4445-4458.
doi: 10.1007/s00253-022-12028-4
[2] Jordan F, Patel H. Catalysis in enzymatic decarboxylations: comparison of selected cofactor-dependent and cofactor-independent examples. ACS Catalysis, 2013, 3(7): 1601-1617.
pmid: 23914308
[3] Li T F, Huo L, Pulley C, et al. Decarboxylation mechanisms in biological system. Bioorganic Chemistry, 2012, 43: 2-14.
doi: 10.1016/j.bioorg.2012.03.001 pmid: 22534166
[4] Du Y L, Ryan K S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Natural Product Reports, 2019, 36(3): 430-457.
doi: 10.1039/C8NP00049B
[5] Ng J, Papandreou A, Heales S J, et al. Monoamine neurotransmitter disorders: clinical advances and future perspectives. Nature Reviews Neurology, 2015, 11(10): 567-584.
doi: 10.1038/nrneurol.2015.172
[6] Roeder T, Seifert M, Kähler C, et al. Tyramine and octopamine: antagonistic modulators of behavior and metabolism. Archives of Insect Biochemistry and Physiology, 2003, 54(1): 1-13.
pmid: 12942511
[7] Kang S, Kang K, Lee K, et al. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta, 2007, 227(1): 263-272.
doi: 10.1007/s00425-007-0614-z pmid: 17763868
[8] Berger M, Gray J A, Roth B L. The expanded biology of serotonin. Annual Review of Medicine, 2009, 60: 355-366.
doi: 10.1146/annurev.med.60.042307.110802 pmid: 19630576
[9] Peuhkuri K, Sihvola N, Korpela R. Diet promotes sleep duration and quality. Nutrition Research, 2012, 32(5): 309-319.
doi: 10.1016/j.nutres.2012.03.009 pmid: 22652369
[10] Back K, Tan D X, Reiter R J. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 2016, 61(4): 426-437.
doi: 10.1111/jpi.12364 pmid: 27600803
[11] Mora-Villalobos J A, Zeng A P. Synthetic pathways and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli. Journal of Biological Engineering, 2018, 12(1): 3.
doi: 10.1186/s13036-018-0094-7
[12] Park S, Kang K, Lee S W, et al. Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Applied Microbiology and Biotechnology, 2011, 89(5): 1387-1394.
doi: 10.1007/s00253-010-2994-4
[13] Fujiwara T, Maisonneuve S, Isshiki M, et al. Sekiguchi lesion gene encodes a cytochrome P 450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. The Journal of Biological Chemistry, 2010, 285(15): 11308-11313.
doi: 10.1074/jbc.M109.091371
[14] Hodgetts R B, O’Keefe S L. Dopa decarboxylase: a model gene-enzyme system for studying development, behavior, and systematics. Annual Review of Entomology, 2006, 51: 259-284.
pmid: 16332212
[15] 李凡, 舒斯云, 包新民. 多巴胺受体的结构和功能. 中国神经科学杂志, 2003(6): 405-410.
Li F, Shu S Y, Bao X M. Structure and function of dopamine receptors. Chinese Journal of Neuroscience, 2003(6): 405-410.
[16] Crisp K M, Mesce K A. A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech. Journal of Experimental Biology, 2004, 207(26): 4535-4542.
doi: 10.1242/jeb.01315
[17] 宋富强, 陈五九, 吴凤礼, 等. 异源表达多巴脱羧酶促进大肠杆菌从头合成多巴胺. 生物工程学报, 2021, 37(12): 4266-4276.
Song F Q, Chen W J, Wu F L, et al. Heterogeneous expression of DOPA decarboxylase to improve the production of dopamine in Escherichia coli. Chinese Journal of Biotechnology, 2021, 37(12): 4266-4276.
[18] Shen P J, Gu S Y, Jin D, et al. Engineering metabolic pathways for cofactor self-sufficiency and serotonin production in Escherichia coli. ACS Synthetic Biology, 2022, 11(8): 2889-2900.
doi: 10.1021/acssynbio.2c00298
[19] van Kessel S P, Frye A K, El-Gendy A O, et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nature Communications, 2019, 10(1): 1-11.
doi: 10.1038/s41467-018-07882-8
[20] Facchini P J, Huber-Allanach K L, Tari L W. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000, 54(2): 121-138.
doi: 10.1016/s0031-9422(00)00050-9 pmid: 10872203
[21] Wang H, Yu J, Satoh Y, et al. Crystal structures clarify cofactor binding of plant tyrosine decarboxylase. Biochemical and Biophysical Research Communications, 2020, 523(2): 500-505.
doi: S0006-291X(19)32407-6 pmid: 31898973
[22] Facchini P J, De Luca V. Phloem-specific expression of tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy. The Plant Cell, 1995, 7(11): 1811-1821.
pmid: 12242361
[23] 吴洁, 固旭, 李东, 等. 降脂药苯扎贝特合成工艺改进. 中国新药杂志, 2010, 19(4): 311-312.
Wu J, Gu X, Li D, et al. Improved synthesis of hypolipidemic drug bezafibrate. Chinese Journal of New Drugs, 2010, 19(4): 311-312.
[24] Nishimaki-Mogami T, Suzuki K, Okochi E, et al. Bezafibrate and clofibric acid are novel inhibitors of phosphatidylcholine synthesis via the methylation of phosphatidylethanolamine. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1996, 1304(1): 11-20.
doi: 10.1016/S0005-2760(96)00101-4
[25] University of Barcelona. Combination of amines and vanadium(Ⅱ/Ⅳ) compounds for the treatment and prevention of diabetes mellitus: Europe, EP01983613.9. 2003-08-27[2023-08-16]. https://europepmc.org/article/PAT/EP1338280.
[26] Jiang M Y, Xu G C, Ni J, et al. Improving soluble expression of tyrosine decarboxylase from Lactobacillus brevis for tyramine synthesis with high total turnover number. Applied Biochemistry and Biotechnology, 2019, 188(2): 436-449.
doi: 10.1007/s12010-018-2925-x
[27] Torrens-Spence M P, Chiang Y C, Smith T, et al. Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(20): 10806-10817.
[28] Nishino J, Hayashi H, Ishii S, et al. An anomalous side reaction of the Lys 303 mutant aromatic L- amino acid decarboxylase unravels the role of the residue in catalysis. The Journal of Biochemistry, 1997, 121(3): 604-611.
doi: 10.1093/oxfordjournals.jbchem.a021628
[29] Toney M D. Controlling reaction specificity in pyridoxal phosphate enzymes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2011, 1814(11): 1407-1418.
doi: 10.1016/j.bbapap.2011.05.019
[30] Ishii S, Mizuguchi H, Nishino J, et al. Functionally important residues of aromatic L-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis. The Journal of Biochemistry, 1996, 120(2): 369-376.
doi: 10.1093/oxfordjournals.jbchem.a021422
[31] Hayashi H, Mizuguchi H, Kagamiyama H. Rat liver aromatic L-amino acid decarboxylase: Spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry, 1993, 32(3): 812-818.
pmid: 8422386
[32] Burkhard P, Dominici P, Borri-Voltattorni C, et al. Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nature Structural Biology, 2001, 8(11): 963-967.
pmid: 11685243
[33] Zhu H X, Xu G C, Zhang K, et al. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding. Scientific Reports, 2016, 6(1): 1-10.
doi: 10.1038/s41598-016-0001-8
[34] Torrens-Spence M P, Lazear M, von Guggenberg R, et al. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases. Phytochemistry, 2014, 106: 37-43.
doi: S0031-9422(14)00277-5 pmid: 25107664
[35] Choi Y, Han S W, Kim J S, et al. Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus. Applied Microbiology and Biotechnology, 2021, 105(7): 2775-2785.
doi: 10.1007/s00253-021-11122-3
[36] Zhang K, Ni Y. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization. Protein Expression and Purification, 2014, 94: 33-39.
doi: 10.1016/j.pep.2013.10.018 pmid: 24211777
[37] Luo H, Schneider K, Christensen U, et al. Microbial synthesis of human-hormone melatonin at gram scales. ACS Synthetic Biology, 2020, 9(6): 1240-1245.
doi: 10.1021/acssynbio.0c00065 pmid: 32501000
[38] Grewal P S, Samson J A, Baker J J, et al. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nature Chemical Biology, 2021, 17(1): 96-103.
doi: 10.1038/s41589-020-00668-4 pmid: 33046851
[39] Lu H Y, Villada J C, Lee P K H. Modular metabolic engineering for biobased chemical production. Trends in Biotechnology, 2019, 37(2): 152-166.
doi: S0167-7799(18)30194-X pmid: 30064888
[40] Ni C, Dinh C V, Prather K L J. Dynamic control of metabolism. Annual Review of Chemical and Biomolecular Engineering, 2021, 12: 519-541.
doi: 10.1146/chembioeng.2021.12.issue-1
[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 王一涵,李海岩,薛永常. 黄素依赖型卤化酶的结构特点及工程改造*[J]. 中国生物工程杂志, 2021, 41(4): 74-80.
[3] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[4] 侯云德. 现代分子生物学发展趋向[J]. 中国生物工程杂志, 1991, 11(6): 1-15.
[5] 赵云德, 王贤舜. 枯草杆菌碱性蛋白酶蛋白质工程进展[J]. 中国生物工程杂志, 1991, 11(6): 16-19.
[6] 施建平, 毕汝昌, 刘兢, 陈洪. 英国的蛋白质工程研究[J]. 中国生物工程杂志, 1989, 9(2): 52-57.
[7] 邹承鲁, 雷克健. 蛋白质工程及其展望[J]. 中国生物工程杂志, 1987, 7(3): 1-8.
[8] WilliamH.Rastetter, 卓肇文. 酶工程:应用和希望[J]. 中国生物工程杂志, 1984, 4(1): 44-49.
[9] 罗明典. 干扰素(IFN)研究的两个主要发现[J]. 中国生物工程杂志, 1981, 1(3): 62-63.