Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (4): 74-80    DOI: 10.13523/j.cb.2012028
综述     
黄素依赖型卤化酶的结构特点及工程改造*
王一涵,李海岩,薛永常()
大连工业大学生物工程学院 大连 116034
The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase
WANG Yi-han,LI Hai-yan,XUE Yong-chang()
School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
 全文: PDF(5974 KB)   HTML
摘要:

卤化物是通过卤化酶催化卤族元素在有机化合物上特定位置发生取代形成的一类化合物,具有独特的生理生化作用。黄素依赖型卤化酶具有良好的区域选择性,虽然有相似的黄素分子的结合位点,但在底物结合方面略有不同,对其结构和合成途径及结合蛋白质工程的随机诱变和定向改造的研究在工业应用中至关重要。讨论了具有高区域选择性的黄素依赖型卤化酶的结构特点及工程改造,以及经过工程改造后黄素依赖型卤化酶在工业生产中的应用。

关键词: 黄素依赖型卤化酶高选择性结构特点定向改造    
Abstract:

Halides are a kind of compounds which catalyzed by halogenase to the addition of halogen in secondary metabolites, have unique physiological and biochemical functions. Flavin-dependent halogenases have good regional selectivity and stability, and similar FAD binding sites with slight difference in substrates made them very important in industrial application. Therefore, the studies on its structure and synthetic pathway as well as random mutagenesis and directed modification of protein engineering are very important for its industry application. In this paper, the structural characteristics and engineering modification of flavin-dependent halogenases with high regional selectivity are reviewed, and it is of guiding significance for the application of engineering-modification flavin-dependent halides in industrial production.

Key words: Flavin-dependent halogenase    High selectivity    Structural characteristics    Directional transformation
收稿日期: 2020-12-17 出版日期: 2021-04-30
ZTFLH:  Q819  
基金资助: *辽宁省自然科学基金资助项目(20180550858)
通讯作者: 薛永常     E-mail: xueych@dlpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王一涵
李海岩
薛永常

引用本文:

王一涵,李海岩,薛永常. 黄素依赖型卤化酶的结构特点及工程改造*[J]. 中国生物工程杂志, 2021, 41(4): 74-80.

WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase. China Biotechnology, 2021, 41(4): 74-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2012028        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I4/74

图1  PrnA和PyrH的晶体结构[32]
图2  VirX1的蛋白质结构
[1] Gokel G W. Comprehensive Supramolecular Chemistry II. Amsterdam: Elsevier, 2017: 203-216.
[2] Jukes T H. Some historical notes on chlortetracycline. Reviews of Infectious Diseases, 1985,7(5):702-707.
doi: 10.1093/clinids/7.5.702 pmid: 3903946
[3] Moellering R C. Vancomycin: a 50-year reassessment. Clinical Infectious Diseases, 2006,42(Suppl 1):S3-S4.
[4] Hammer P E, Hill D S, Lam S T, et al. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Applied and Environmental Microbiology, 1997,63(6):2147-2154.
doi: 10.1128/AEM.63.6.2147-2154.1997 pmid: 9172332
[5] Feling R H, Buchanan G O, Mincer T J, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angewandte Chemie International Edition, 2003,42(3):355-357.
doi: 10.1002/anie.200390115 pmid: 12548698
[6] Gkotsi D S, Dhaliwal J, McLachlan M M, et al. Halogenases: powerful tools for biocatalysis (mechanisms applications and scope). Current Opinion in Chemical Biology, 2018,43:119-126.
doi: 10.1016/j.cbpa.2018.01.002 pmid: 29414530
[7] Eustáquio A S, Gust B, Luft T, et al. Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. Chemistry & Biology, 2003,10(3):279-288.
pmid: 12670542
[8] Mahoney K P, Smith D R M, Bogosyan E J A, et al. Access to high value natural and unnatural products through hyphenating chemical synthesis and biosynthesis. Synthesis, 2014,46(16):2122-2132.
[9] Schmidt R, Stolle A, Ondruschka B. Aromatic substitution in ball mills: formation of aryl chlorides and bromides using potassium peroxomonosulfate and NaX. Green Chemistry, 2012,14(6):1673-1679.
[10] Eissen M, Strudthoff M, Backhaus S, et al. Oxidation numbers, oxidants, and redox reactions: variants of the electrophilic bromination of alkenes and variants of the application of oxone. Journal of Chemical Education, 2011,88(3):284-291.
[11] Eissen M, Lenoir D. Electrophilic bromination of alkenes: environmental, health and safety aspects of new alternative methods. Chemistry, 2008,14(32):9830-9841.
doi: 10.1002/chem.200800462 pmid: 18924183
[12] Shaw P D, Hager L P. Chloroperoxidase: a component of the β-ketoadipate chlorinase system. Journal of Biological Chemistry, 1961,236(6):1626-1630.
[13] O’Hagan D, Harper D B. Fluorine-containing natural products. Journal of Fluorine Chemistry, 1999,100(1-2):127-133.
[14] Marais J S C. Monofluoroacetic acid, the toxic principle of “gifblaar” Dichapetalum cymosum (Hook) Engl. Verterinary Science and Animal Industry, 1944,20:67-73.
[15] van Pée K H, Dong C J, Flecks S, et al. Biological halogenation has moved far beyond haloperoxidases. Advances in Applied Microbiology, 2006,59:127-157.
pmid: 16829258
[16] Vaillancourt F H, Yin J, Walsh C T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII α-ketoglutarate- and O2-dependent halogenase. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(29):10111-10116.
[17] Vaillancourt F H, Yeh E, Vosburg D A, et al. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature, 2005,436(7054):1191-1194.
pmid: 16121186
[18] Dairi T, Nakano T, Aisaka K, et al. Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Bioscience, Biotechnology, and Biochemistry, 1995,59(6):1099-1106.
doi: 10.1271/bbb.59.1099 pmid: 7612997
[19] 唐晓敏, 徐俊. 微生物卤代酶研究进展. 中国抗生素杂志, 2008,33(11):641-644,677.
Tang X M, Xu J. Advance in research on the halogenase from microorganism. Chinese Journal of Antibiotics, 2008,33(11):641-644,677.
[20] Minges H, Schnepel C, Böttcher D, et al. Targeted enzyme engineering unveiled unexpected patterns of halogenase stabilization. ChemCatChem, 2020,12(3):818-831.
[21] Dong C J, Flecks S, Unversucht S, et al. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science, 2005,309(5744):2216-2219.
doi: 10.1126/science.1116510 pmid: 16195462
[22] Pang A H, Garneau-Tsodikova S, Tsodikov O V. Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway. Journal of Structural Biology, 2015,192(3):349-357.
pmid: 26416533
[23] Buedenbender S, Rachid S, Müller R, et al. Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases. Journal of Molecular Biology, 2009,385(2):520-530.
doi: 10.1016/j.jmb.2008.10.057 pmid: 19000696
[24] Latham J, Brandenburger E, Shepherd S A, et al. Development of halogenase enzymes for use in synthesis. Chemical Reviews, 2018,118(1):232-269.
pmid: 28466644
[25] Agarwal V, El Gamal A A, Yamanaka K, et al. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nature Chemical Biology, 2014,10(8):640-647.
pmid: 24974229
[26] Agarwal V, Miles Z D, Winter J M, et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chemical Reviews, 2017,117(8):5619-5674.
doi: 10.1021/acs.chemrev.6b00571 pmid: 28106994
[27] Podzelinska K, Latimer R, Bhattacharya A, et al. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. Journal of Molecular Biology, 2010,397(1):316-331.
doi: 10.1016/j.jmb.2010.01.020 pmid: 20080101
[28] Frese M, Guzowska P H, Voβ H, et al. Regioselective enzymatic halogenation of substituted tryptophan derivatives using the FAD-dependent halogenase RebH. ChemCatChem, 2014,6(5):1270-1276.
[29] Yeh E, Garneau S, Walsh C T. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(11):3960-3965.
[30] van Pée K H. Biosynthesis of halogenated metabolites by bacteria. Annual Review of Microbiology, 1996,50:375-399.
doi: 10.1146/annurev.micro.50.1.375 pmid: 8905085
[31] Karabencheva-Christova T G, Torras J, Mulholland A J, et al. Mechanistic insights into the reaction of chlorination of tryptophan catalyzed by tryptophan 7-halogenase. Scientific Reports, 2017,7:17395.
pmid: 29234124
[32] Ainsley J, Mulholland A J, Black G W, et al. Structural insights from molecular dynamics simulations of tryptophan 7-halogenase and tryptophan 5-halogenase. ACS Omega, 2018,3(5):4847-4859.
pmid: 31458701
[33] Shepherd S A, Karthikeyan C, Latham J, et al. Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes. Chemical Science, 2015,6(6):3454-3460.
pmid: 29511510
[34] Gkotsi D S, Ludewig H, Sharma S V, et al. A marine viral halogenase that iodinates diverse substrates. Nature Chemistry, 2019,11(12):1091-1097.
pmid: 31611633
[35] Weichold V, Milbredt D, van Pée K H. Specific enzymatic halogenation-from the discovery of halogenated enzymes to their applications in vitro and in vivo. Angewandte Chemie International Edition, 2016,55(22):6374-6389.
doi: 10.1002/anie.201509573 pmid: 27059664
[36] Sullivan M B, Waterbury J B, Chisholm S W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 2003,424(6952):1047-1051.
doi: 10.1038/nature01929 pmid: 12944965
[37] Neubauer P R, Widmann C, Wibberg D, et al. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS One, 2018,13(5):e0196797.
doi: 10.1371/journal.pone.0196797 pmid: 29746521
[38] Glenn W S, Nims E, O’Connor S E. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. Journal of the American Chemical Society, 2011,133(48):19346-19349.
pmid: 22050348
[39] Facchini P J, Huber-Allanach K L, Tari L W. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000,54(2):121-138.
pmid: 10872203
[40] Menon B R K, Brandenburger E, Sharif H H, et al. RadH: a versatile halogenase for integration into synthetic pathways. Angewandte Chemie International Edition, 2017,56(39):11841-11845.
pmid: 28722773
[41] El Gamal A, Agarwal V, Diethelm S, et al. Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase-thioesterase enzyme pair. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(14):3797-3802.
[42] Payne J T, Poor C B, Lewis J C. Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Angewandte Chemie International Edition, 2015,54(14):4226-4230.
[43] Eggeling L, Bott M. A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2015,99(8):3387-3394.
doi: 10.1007/s00253-015-6508-2 pmid: 25761623
[44] Moritzer A C, Minges H, Prior T, et al. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. Journal of Biological Chemistry, 2019,294(7):2529-2542.
[45] Andorfer M C, Grob J E, Hajdin C E, et al. Understanding flavin-dependent halogenase reactivity via substrate activity profiling. ACS Catalysis, 2017,7(3):1897-1904.
[46] Durak L J, Payne J T, Lewis J C. Late-stage diversification of biologically active molecules via chemoenzymatic C-H functionalization. ACS Catalysis, 2016,6(3):1451-1454.
doi: 10.1021/acscatal.5b02558 pmid: 27274902
[47] Atkinson H J, Morris J H, Ferrin T E, et al. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One, 2009,4(2):e4345.
doi: 10.1371/journal.pone.0004345 pmid: 19190775
[48] Gerlt J A, Bouvier J T, Davidson D B, et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2015,1854(8):1019-1037.
[49] Fejzagić A V, Gebauer J, Huwa N, et al. Halogenating enzymes for active agent synthesis: first steps are done and many have to follow. Molecules, 2019,24(21):4008.
[50] Runguphan W, Qu X D, O’Connor S E. Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature, 2010,468(7322):461-464.
doi: 10.1038/nature09524 pmid: 21048708
[51] Roy A D, Grüschow S, Cairns N, et al. Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. Journal of the American Chemical Society, 2010,132(35):12243-12245.
pmid: 20712319
[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 张海利, 吕淑霞, 田颖川. 韧皮部特异性启动子研究概述[J]. 中国生物工程杂志, 2003, 23(11): 11-15.