Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (7): 12-22    DOI: 10.13523/j.cb.2212033
研究报告     
小鼠垂体瘤细胞冷暴露后蛋白质甲基化修饰分析*
徐颖1,2,王雪2,王倩倩2,朱云平1,2,**(),贾辰熙2,**()
1 安徽医科大学基础医学院 合肥 230032
2 蛋白质组学国家重点实验室 国家蛋白质科学中心(北京) 北京蛋白质组研究中心 北京生命组学研究所 北京 102206
Analysis of Protein Methylation Modification of Mouse Pituitary Tumor Cells after Exposure to Cold
Ying XU1,2,Xue WANG2,Qian-qian WANG2,Yun-ping ZHU1,2,**(),Chen-xi JIA2,**()
1 School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
2 State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
 全文: PDF(2486 KB)   HTML
摘要:

目的:研究小鼠垂体瘤细胞(mouse pituitary tumor cell,AtT20)冷暴露后蛋白质甲基化的变化,以及高效富集和大规模鉴定AtT20细胞的甲基化肽。方法:使用胰蛋白酶和肽N-糖苷酶F(peptide N-glycosidase F,PNGase F)消化蛋白质,利用亲水相互作用色谱(hydrophilic interaction liquid chromatography,HILIC)尖端富集甲基化肽,最后利用质谱法对甲基化肽进行整体分析;通过PhosphoSitePlus®数据库比对新的甲基化位点和蛋白,利用DAVID数据库进行GO功能富集和KEGG通路富集分析,最后对两组细胞所得的甲基化肽和甲基化位点进行差异分析。结果:共鉴定到55个甲基化蛋白和83个甲基化位点,其中78.3%的甲基化位点是未被报道过的;鉴定到的甲基化蛋白主要分布在核染色体、核小体和细胞核中,参与了基因沉默的调控、RNA剪接和mRNA加工等生物过程;KEGG通路富集表明这些蛋白与中性粒细胞胞外陷阱形成、酒精中毒和系统性红斑狼疮等相关。甲基化肽和甲基化位点差异分析显示有7条显著变化的甲基化肽和2个显著变化的位点。结论:AtT20细胞短期冷暴露后蛋白质甲基化变化不显著,首次对AtT20细胞进行全面甲基化蛋白质鉴定,发现了多个未被报道过的甲基化蛋白质和甲基化位点,以期为AtT20细胞的研究提供理论参考。

关键词: 小鼠垂体瘤细胞蛋白质甲基化冷暴露质谱    
Abstract:

Objective: To study the changes of protein methylation in mouse pituitary tumor cell (AtT20) after exposure to cold, and to efficiently enrich and ide.pngy the methylated peptide of AtT20 cells. Methods: Trypsin and Peptide-N-Glycosidase F (PNGase F) were used to digest protein at the same time. Methylated peptides were enriched with the tip of hydrophilic interaction liquid chromatography (HILIC). Finally, the methylated peptides were analyzed by mass spectrometry. The PhosphoSitePlus® database was used to find new methylation sites and proteins, and the DAVID database was used to perform GO function enrichment and KEGG pathway enrichment analysis. Finally, the difference analysis was performed on the methylation peptides and methylation sites obtained from the two groups of cells. Results: 55 methylation proteins and 83 methylation sites were ide.pngied, of which 78.3% were unreported. The ide.pngied methylation proteins are mainly distributed in nuclear chromosomes, nucleosomes and nuclei, and they participate in the regulation of gene silencing, RNA splicing, mRNA processing and other biological processes. The enrichment of KEGG pathway indicates that these proteins are related to neutrophil exocytosis, alcoholism and systemic lupus erythematosus. The difference analysis of methylation peptides and methylation sites showed that there were 7 significantly changed methylation peptides and 2 significantly changed sites. Conclusion: The changes of protein methylation in AtT20 cells after short-term exposure to cold are not significant. For the first time, comprehensive ide.pngication of methylated proteins in AtT20 cells was carried out, and several unreported methylated proteins and methylation sites were found,which may provide new insights into the study of AtT20 cells.

Key words: Mouse pituitary tumor cell    Protein methylation    Cold exposure    Mass spectrum
收稿日期: 2022-12-23 出版日期: 2023-08-03
ZTFLH:  Q816  
基金资助: 国家重点研发计划(2021YFA1302601)
通讯作者: **电子信箱:zhuyunping@ncpsb.org.cn;cjia@ncpsb.org.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐颖
王雪
王倩倩
朱云平
贾辰熙

引用本文:

徐颖, 王雪, 王倩倩, 朱云平, 贾辰熙. 小鼠垂体瘤细胞冷暴露后蛋白质甲基化修饰分析*[J]. 中国生物工程杂志, 2023, 43(7): 12-22.

Ying XU, Xue WANG, Qian-qian WANG, Yun-ping ZHU, Chen-xi JIA. Analysis of Protein Methylation Modification of Mouse Pituitary Tumor Cells after Exposure to Cold. China Biotechnology, 2023, 43(7): 12-22.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2212033        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I7/12

Time /min A/% B/% Flow /(nL·min-1)
00:00 97 3 600
01:00 97 3 600
50:00 87 13 600
65:00 75 25 600
66:00 5 95 600
72:00 5 95 600
表1  高效液相色谱分离梯度
图1  实验工作流程和数据质控
图2  总体甲基化位点数据分析
图3  甲基化蛋白质的生物信息学分析
图4  甲基化肽段和位点的差异分析
[1] 张锴, 李积胜. 寒冷环境对机体的影响及其机制. 国外医学(卫生学分册), 2006, 33(4): 212-215.
Zhang K, Li J S. Influence of cold environment on organism and its mechanism. Journal of Environmental Hygiene, 2006, 33(4): 212-215.
[2] Zhang Z, Boelen A, Kalsbeek A, et al. TRH neurons and thyroid hormone coordinate the hypothalamic response to cold. European Thyroid Journal, 2018, 7(6): 279-288.
doi: 10.1159/000493976 pmid: 30574457
[3] Ishikawa T, Quan L, Li D R, et al. Postmortem biochemistry and immunohistochemistry of adrenocorticotropic hormone with special regard to fatal hypothermia. Forensic Science International, 2008, 179(2-3): 147-151.
doi: 10.1016/j.forsciint.2008.04.023 pmid: 18554831
[4] Shida A, Ikeda T, Tani N, et al. Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation. PLoS One, 2020, 15(2): e0218910.
doi: 10.1371/journal.pone.0218910
[5] Wang X Z, Mi S J, Zhao M X, et al. Quantitative analysis of the protein methylome reveals PARP 1 methylation is involved in DNA damage response. Frontiers in Molecular Biosciences, 2022, 9: 878646.
doi: 10.3389/fmolb.2022.878646
[6] Zhang M, Xu J Y, Hu H, et al. Systematic proteomic analysis of protein methylation in prokaryotes and eukaryotes revealed distinct substrate specificity. Proteomics, 2018, 18(1): 1700300.
doi: 10.1002/pmic.v18.1
[7] Ma M, Zhao X Y, Chen S, et al. Strategy based on deglycosylation, multiprotease, and hydrophilic interaction chromatography for large-scale profiling of protein methylation. Analytical Chemistry, 2017, 89(23): 12909-12917.
doi: 10.1021/acs.analchem.7b03673 pmid: 29090900
[8] Afjehi-Sadat L, Garcia B A. Comprehending dynamic protein methylation with mass spectrometry. Current Opinion in Chemical Biology, 2013, 17(1): 12-19.
doi: 10.1016/j.cbpa.2012.12.023 pmid: 23333572
[9] Aletta J M, Cimato T R, Ettinger M J. Protein methylation: a signal event in post-translational modification. Trends in Biochemical Sciences, 1998, 23(3): 89-91.
pmid: 9581497
[10] Blanc R S, Richard S. Arginine methylation: the coming of age. Molecular Cell, 2017, 65(1): 8-24.
doi: S1097-2765(16)30711-0 pmid: 28061334
[11] Dillon S C, Zhang X, Trievel R C, et al. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biology, 2005, 6(8): 227.
doi: 10.1186/gb-2005-6-8-227 pmid: 16086857
[12] Black J C, Van Rechem C, Whetstine J R. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Molecular Cell, 2012, 48(4): 491-507.
doi: 10.1016/j.molcel.2012.11.006 pmid: 23200123
[13] Dai X F, Ren T J, Zhang Y X, et al. Methylation multiplicity and its clinical values in cancer. Expert Reviews in Molecular Medicine, 2021, 23: e2.
doi: 10.1017/erm.2021.4 pmid: 33787478
[14] Hamamoto R, Nakamura Y. Dysregulation of protein methyltransferases in human cancer: an emerging target class for anticancer therapy. Cancer Science, 2016, 107(4): 377-384.
doi: 10.1111/cas.12884 pmid: 26751963
[15] Carlson S M, Gozani O. Nonhistone lysine methylation in the regulation of cancer pathways. Cold Spring Harbor Perspectives in Medicine, 2016, 6(11): a026435.
doi: 10.1101/cshperspect.a026435
[16] Huseby C J, Hoffman C N, Cooper G L, et al. Qua. pngication of tau protein lysine methylation in aging and Alzheimer’s disease. Journal of Alzheimer’s Disease, 2019, 71(3): 979-991.
[17] Rowe E M, Xing V, Biggar K K. Lysine methylation: implications in neurodegenerative disease. Brain Research, 2019, 1707: 164-171.
doi: S0006-8993(18)30582-1 pmid: 30465751
[18] Uhlmann T, Geoghegan V L, Thomas B, et al. A method for large-scale ide.pngication of protein arginine methylation. Molecular & Cellular Proteomics, 2012, 11(11): 1489-1499.
doi: 10.1074/mcp.M112.020743
[19] Jensen P H, Mysling S, Højrup P, et al. Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE). Methods in Molecular Biology, 2013, 951: 131-144.
doi: 10.1007/978-1-62703-146-2_10 pmid: 23296529
[20] Norris G E, Stillman T J, Anderson B F, et al. The three-dimensional structure of PNGase F, a glycosyl asparaginase from Flavobacterium meningosepticum. Structure, 1994, 2(11): 1049-1059.
pmid: 7881905
[21] Cox J, Mann M. MaxQuant enables high peptide ide.pngication rates, individualized p.p.b.-range mass accuracies and proteome-wide protein qua.pngication. Nature Biotechnology, 2008, 26(12): 1367-1372.
doi: 10.1038/nbt.1511
[22] Chi H, Liu C, Yang H, et al. Comprehensive ide.pngication of peptides in tandem mass spectra using an efficient open search engine. Nature Biotechnology, 2018, 36(11): 1059-1061.
doi: 10.1038/nbt.4236
[23] Huang da W, Sherman B T, Lempicki R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 2009, 37(1): 1-13.
doi: 10.1093/nar/gkn923 pmid: 19033363
[24] Crooks G E, Hon G, Chandonia J M, et al. WebLogo: a sequence logo generator. Genome Research, 2004, 14(6): 1188-1190.
doi: 10.1101/gr.849004 pmid: 15173120
[25] Ma J, Chen T, Wu S F, et al. iProX: an integrated proteome resource. Nucleic Acids Research, 2019, 47(D1): D1211-D1217.
doi: 10.1093/nar/gky869
[26] Hornbeck P V, Zhang B, Murray B, et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Research, 2015, 43(D1): D512-D520.
doi: 10.1093/nar/gku1267
[27] Larsen S C, Sylvestersen K B, Mund A, et al. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Science Signaling, 2016, 9(443): rs9.
[28] Wesche J, Kühn S, Kessler B M, et al. Protein arginine methylation: a prominent modification and its demethylation. Cellular and Molecular Life Sciences, 2017, 74(18): 3305-3315.
doi: 10.1007/s00018-017-2515-z pmid: 28364192
[29] Pope A J, Karuppiah K, Cardounel A J. Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production. Pharmacological Research, 2009, 60(6): 461-465.
doi: 10.1016/j.phrs.2009.07.016 pmid: 19682581
[30] Rima O, Achim S, Ulrich D, et al. Methylation status and neurodegenerative markers in Parkinson disease. Clinical Chemistry, 2009, 55(10): 1852-1860.
doi: 10.1373/clinchem.2009.125021 pmid: 19679632
[31] Arrowsmith C H, Bountra C, Fish P V, et al. Epigenetic protein families: a new frontier for drug discovery. Nature Reviews Drug Discovery, 2012, 11(5): 384-400.
doi: 10.1038/nrd3674 pmid: 22498752
[32] Boersema P J, Mohammed S, Heck A J R. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Analytical and Bioanalytical Chemistry, 2008, 391(1): 151-159.
doi: 10.1007/s00216-008-1865-7 pmid: 18264818
[33] West L E, Gozani O. Regulation of p53 function by lysine methylation. Epigenomics, 2011, 3(3): 361-369.
doi: 10.2217/EPI.11.21 pmid: 21826189
[34] Vallianatos C N, Iwase S. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics, 2015, 7(3): 503-519.
doi: 10.2217/epi.15.1 pmid: 26077434
[35] Cao R, Wang L J, Wang H B, et al. Role of histone H lysine 27 methylation in polycomb-group silencing. Science, 2002, 298(5595): 1039-1043.
doi: 10.1126/science.1076997 pmid: 12351676
[36] DiFiore J V, Ptacek T S, Wang Y, et al. Unique and shared roles for histone H3K 36 methylation states in transcription regulation functions. Cell Reports, 2020, 31(10): 107751.
doi: 10.1016/j.celrep.2020.107751
[37] Zhao W, Neyt P, Van Lijsebettens M, et al. Interactive and noninteractive roles of histone H2B monoubiquitination and H3K 36 methylation in the regulation of active gene transcription and control of plant growth and development. The New Phytologist, 2019, 221(2): 1101-1116.
doi: 10.1111/nph.2019.221.issue-2
[38] Wang K Y, Zhou Y J, Liu H W, et al. Proteomic analysis of protein methylation in the yeast Saccharomyces cerevisiae. Journal of Proteomics, 2015, 114: 226-233.
doi: 10.1016/j.jprot.2014.07.032
[39] Tripodi A, Ammollo C T, Semeraro F, et al. Hypercoagulability in patients with Cushing disease detected by thrombin generation assay is associated with increased levels of neutrophil extracellular trap-related factors. Endocrine, 2017, 56(2): 298-307.
doi: 10.1007/s12020-016-1027-1 pmid: 27448294
[40] Harris-Jones J N. The role of ACTH and cortisone in the treatment of systemic lupus erythematosus. Postgraduate Medical Journal, 1956, 32(365): 145-149.
doi: 10.1136/pgmj.32.365.145
[41] Slominski R M, Tuckey R C, Manna P R, et al. Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes and Immunity, 2020, 21(3): 150-168.
doi: 10.1038/s41435-020-0096-6 pmid: 32203088
[42] Rivier C. Alcohol stimulates ACTH secretion in the rat: mechanisms of action and interactions with other stimuli. Alcoholism: Clinical and Experimental Research, 1996, 20(2): 240-254.
doi: 10.1111/acer.1996.20.issue-2
[43] Vernikos J, Dallman M F, Bonner C, et al. Pituitary-adrenal function in rats chronically exposed to cold. Endocrinology, 1982, 110(2): 413-420.
pmid: 6276134
[44] Sasaki F, Wu P, Rougeau D, et al. Cytochemical studies of responses of corticotropes and thyrotropes to cold and novel environment stress. Endocrinology, 1990, 127(1): 285-297.
pmid: 2163313
[45] Senovilla L, Núñez L, Villalobos C, et al. Rapid changes in anterior pituitary cell phenotypes in male and female mice after acute cold stress. Endocrinology, 2008, 149(5): 2159-2167.
doi: 10.1210/en.2007-1030 pmid: 18202140
[1] 孙若航,陈瑞冰. RNA结合蛋白质谱鉴定技术研究进展*[J]. 中国生物工程杂志, 2023, 43(7): 77-87.
[2] 王宇航, 陈学明, 刘俗生, 阮志军, 张敏, 宋春丽, 尹丰, 李子刚. 一种多肽固相合成方法与纯化策略研究[J]. 中国生物工程杂志, 2023, 43(1): 35-41.
[3] 刘平阳, 刘占芳, 周红, 朱军, 刘耀. 生物质谱分析法在脂质组学的应用[J]. 中国生物工程杂志, 2023, 43(1): 87-103.
[4] 张杰, 林炳锋, 许平翠, 王娜妮, 陈郁. 麦冬提取物治疗2型糖尿病小鼠的血清代谢组学研究*[J]. 中国生物工程杂志, 2022, 42(11): 99-108.
[5] 张砚君, 刘荣, 张梦楠, 苗庆芳, 甄永苏, 熊冬生, 张益芝. IL3融合蛋白稳定性分析、改造及活性研究[J]. 中国生物工程杂志, 2013, 33(3): 117-122.
[6] 贾伟, 陈熙, 周春喜, 宋兰坤. 单克隆抗体仿制药物的结构分析策略[J]. 中国生物工程杂志, 2012, 32(10): 93-98.
[7] 闫慧, 黄文芳, 杨永长, 肖代雯, 姜伟, 罗春丽. 临床常见革兰氏阳性球菌蛋白指纹库的构建[J]. 中国生物工程杂志, 2011, 31(10): 95-99.
[8] 钟一维 李金耀 耿爽 王宾. 鉴定免疫细胞中DNA疫苗结合蛋白[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[9] 钟一维, 李金耀, 耿爽, 王宾. 鉴定免疫细胞中DNA疫苗结合蛋白[J]. 中国生物工程杂志, 2010, 30(10): 12-16.
[10] 李洋 李晖 祝建波 刘进元. 重组萝卜磷脂氢谷胱甘肽过氧化物酶在毕赤酵母优化表达初步纯化与鉴定[J]. 中国生物工程杂志, 2010, 30(04): 54-59.
[11] 王建,王泽建,黄明志,钱江潮,储炬,张嗣良. 13CMFA过程中GC-MS分析菌体蛋白氨基酸的13C标记丰度[J]. 中国生物工程杂志, 2009, 29(07): 87-93.
[12] 王前1,张贵锋2,刘涛2,刘永东2,马润宇1,苏志国2. 基于串联质谱的鱼皮明胶鉴别研究[J]. 中国生物工程杂志, 2009, 29(06): 101-107.
[13] 马义,余榕捷,曾乐,谢珊珊,洪岸. 新型抗2-型糖尿病基因重组RMBAY的克隆、表达及生产环节优化[J]. 中国生物工程杂志, 2009, 29(04): 17-21.
[14] 朱镭,张政希,倪国新,徐学敏,林标扬,李伟. 重组C8orf32蛋白的表达、纯化及抗体制备[J]. 中国生物工程杂志, 2009, 29(04): 1-5.
[15] 闫洁,陈守才,夏志辉. 橡胶树死皮病胶乳C-乳清差异表达蛋白质的筛选与鉴定[J]. 中国生物工程杂志, 2008, 28(6): 28-36.