Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (6): 20-30    DOI: 10.13523/j.cb.2302020
技术与方法     
具有高亲和力和稳定性的人源性抗PD-L1二硫键稳定Diabody的制备*
郭娆晴,黄嘉雯,张利刚,赵文丽,辜江涛,邓宁**()
暨南大学生命科学技术学院生物系 广东省抗体药物与免疫检测工程技术研究中心 广州 510632
Preparation of a Fully Human Anti-PD-L1 Disulfide-stabilized Diabody with High Affinity and Stability
GUO Rao-qing,HUANG Jia-wen,ZHANG Li-gang,ZHAO Wen-li,GU Jiang-tao, DENG-Ning**()
Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
 全文: PDF(3635 KB)   HTML
摘要:

目的:对天然噬菌体抗体库进行筛选并对抗体进行体外亲和力成熟,获得高亲和力人源性抗PD-L1抗体,然后对该抗体进行二硫键稳定改造,获得具有高亲和力和稳定性的人源性抗PD-L1的二硫键稳定Diabody。方法:首先以PD-L1重组蛋白为抗原在天然噬菌体Fab抗体库中筛选Fab抗体,其次分析结合能力较好的抗PD-L1的Fab抗体可变区基因中的热点,通过对轻链、重链CDR3区的7处热点随机突变构建噬菌体抗体突变库,从中筛选出亲和力得到提高的抗体。最后在抗体骨架区引入两个二硫键,构建二硫键稳定的抗PD-L1的ds-Diabody,并在毕赤酵母GS115中进行表达。结果:该方法筛选获得了6株特异性抗PD-L1噬菌体Fab抗体,对结合能力较好的其中一株抗体CDR3区的热点进行随机突变,成功构建库容为1.14×108 CFU/mL的噬菌体抗体突变库,并从中筛选出亲和力提高约6倍的噬菌体抗体突变株。对该抗体骨架区进行二硫键引入,成功构建与表达二硫键稳定的ds-Diabody。结论:构建的ds-Diabody比Fab抗体与PD-L1结合亲和力高、稳定性好,为药物开发、肿瘤治疗等研究PD-1/PD-L1途径提供有力依据。

关键词: PD-L1噬菌体抗体库抗体亲和力成熟二硫键稳定双链抗体    
Abstract:

Objective: To isolate a fully human anti-PD-L1 antibody from a naïve phage-display human Fab library and increase its affinity through in vitro antibody affinity maturation, and then modify the antibody with disulfide bond stability to obtain a humanized anti-PD-L1 disulfide-stabilized diabody with high affinity and stability. Methods: First, the PD-L1 recombinant protein was used as the antigen in the naïve phage Fab antibody library to screen Fab antibodies. Then the hot spots in the variable region gene of Fab antibody with good binding ability against PD-L1 were analyzed, and the phage antibody mutation library was constructed by randomly mutating 7 hot spots in the light chain and heavy chain CDR3 region, from which antibodies with improved affinity were screened. Finally, two disulfide bonds were introduced in the antibody backbone region to construct disulfide-stabilized anti-PD-L1 ds-Diabody, which was expressed in GS115. Results: Six specific anti-PD-L1 phage Fab antibodies were screened and obtained, the CDR3 region hot spot of one of the antibodies with better binding ability was randomly mutated to successfully construct a phage antibody mutant library with a library capacity of 1.14×108 CFU/mL, and phage antibody mutant strains with increased affinity of about 6 times were screened. The disulfide bond was introduced to the backbone region of the antibody, and the ds-Diabody with stable disulfide bond was successfully constructed and expressed. Conclusion: The ds-Diabody has higher binding affinity and better stability than Fab antibody to PD-L1, which provides a strong basis for drug development, tumor treatment and other research on PD-1/PD-L1 pathway.

Key words: PD-L1    Phage antibody library    Antibody affinity maturation    Disulfide-stabilized diabody (ds-Diabody)
收稿日期: 2023-02-10 出版日期: 2023-07-04
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81972705)
通讯作者: **电子信箱:tdengn@jnu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭娆晴
黄嘉雯
张利刚
赵文丽
辜江涛
邓宁

引用本文:

郭娆晴, 黄嘉雯, 张利刚, 赵文丽, 辜江涛, 邓宁. 具有高亲和力和稳定性的人源性抗PD-L1二硫键稳定Diabody的制备*[J]. 中国生物工程杂志, 2023, 43(6): 20-30.

GUO Rao-qing, HUANG Jia-wen, ZHANG Li-gang, ZHAO Wen-li, GU Jiang-tao, DENG-Ning. Preparation of a Fully Human Anti-PD-L1 Disulfide-stabilized Diabody with High Affinity and Stability. China Biotechnology, 2023, 43(6): 20-30.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2302020        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I6/20

轮数 PD-L1/(μg/μL) 输入滴度/(CFU/mL) 输出滴度/(CFU/mL) 收获率 倍数
1 50 1.6×1013 1.14×106 7.13×10-8 1
2 25 7.36×1012 1.99×106 2.7×10-7 4
3 12.5 1.84×1012 8.54×106 4.64×10-6 65
4 6.25 4.24×1013 6.84×107 1.61×10-5 226
表1  以PD-L1胞外段蛋白为抗原对Fab噬菌体抗体库的富集效应
图1  天然噬菌体Fab抗体库中抗PD-L1抗体的筛选与可溶性表达
Fab 克隆 VL 种系基因 同源性/% CDR1 CDR2 CDR3
F2 Homsap IGKV3-11*01 95.51 QSVSNY DAS QQRHSWPLT
F3 Homsap IGLV1-40*02 95.14 SSNIGAGSD ANT QSYDSSLSGWV
F4 Homsap IGKV1-39*01 95.96 QRINSY TTS QQSFSNPYT
F6 Homsap IGLV3-19*01 99.62 SLRSYY GKN NSRDSSGNWV
F7 Homsap IGKV4-1*01 89.73 QNILYSSKNKNY WAS CSYAGSSSFV
F8 Homsap IGKV1-33*01 96.69 QDISNY DAS QQSGA
表2  轻链基因可变区序列分析
Fab 克隆 VH 种系基因 同源性/% CDR1 CDR2 CDR3
F2 Homsap IGHV1-8*01 F 97.57 GYTFTSYD MNPNSGNT ARGTPYYDFWSGYYSPHYYYYYYMDV
F3 Homsap IGHV4-39*07 F 95.17 GGSISSSNYY MSYSGSS ASTRSYYANWFDP
F4 Homsap IGHV3-7*05 F 94.10 GFPFSSYW IKPDGSDT ARGTSWNIFDS
F6 Homsap IGHV3-7*01 F 85.07 GGSISSYY IKQDESTK ARVWGTSGWAGFDY
F7 Homsap IGHV3-9*01 F 98.94 GFTFDDYA ISWNSGSI AKDIRYSSSWGPFDY
F8 Homsap IGHV3-23*03 F 90.97 GFSGSTFE IDSGGSSR VKGGWLDY
表3  重链基因可变区序列分析
图2  噬菌体抗体突变文库的构建与筛选
轮数 PD-L1/(μg/μL) 输入滴度/(CFU/mL) 输出滴度/(CFU/mL) 收获率 倍数
1 40 1.45×1013 1.82×106 1.26×10-7 1
2 20 3.83×1012 4.27×106 1.11×10-6 9
3 10 2.03×1012 8.82×106 4.34×10-6 34
4 5 1.36×1012 3.04×107 2.24×10-5 178
表4  噬菌体抗体突变文库4轮筛选的输入和输出滴度
图3  噬菌体抗体突变株阳性的序列分析
图4  抗PD-L1的ds-Diabody在毕赤酵母的表达、纯化和结合活性研究
[1] Zou W P, Wolchok J D, Chen L P. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Science Translational Medicine, 2016, 8(328): 328rv4.
[2] Cai X, Zhan H J, Ye Y G, et al. Current progress and future perspectives of immune checkpoint in cancer and infectious diseases. Frontiers in Genetics, 2021, 12: 785153.
doi: 10.3389/fgene.2021.785153
[3] Cha J H, Chan L C, Li C W, et al. Mechanisms controlling PD-L 1 expression in cancer. Molecular Cell, 2019, 76(3): 359-370.
doi: 10.1016/j.molcel.2019.09.030
[4] Freeman G J, Long A J, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B 7 family member leads to negative regulation of lymphocyte activation. The Journal of Experimental Medicine, 2000, 192(7): 1027-1034.
doi: 10.1084/jem.192.7.1027
[5] Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. Journal of Hematology & Oncology, 2019, 12(1): 1-13.
[6] Ma W J, Gilligan B M, Yuan J D, et al. Current status and perspectives in translational biomarker research for PD-1/PD-L 1 immune checkpoint blockade therapy. Journal of Hematology & Oncology, 2016, 9(1): 47.
[7] Jain R K. Barriers to drug delivery in solid tumors. Scientific American, 1994, 271(1): 58-65.
doi: 10.1038/scientificamerican0794-58 pmid: 8066425
[8] Trédan O, Galmarini C M, Patel K, et al. Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 2007, 99(19): 1441-1454.
doi: 10.1093/jnci/djm135 pmid: 17895480
[9] Thurber G M, Schmidt M M, Wittrup K D. Factors determining antibody distribution in tumors. Trends in Pharmacological Sciences, 2008, 29(2): 57-61.
doi: 10.1016/j.tips.2007.11.004 pmid: 18179828
[10] Bordeau B M, Balthasar J P. Strategies to enhance monoclonal antibody uptake and distribution in solid tumors. Cancer Biology and Medicine, 2021, 18(3): 649-664.
doi: 10.20892/j.issn.2095-3941.2020.0704
[11] Primeau Andrew J, Augusto R, David H, et al. The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2005, 11(24 Pt 1):8782-8788.
doi: 10.1158/1078-0432.CCR-05-1664
[12] Minchinton A I, Tannock I F. Drug penetration in solid tumours. Nature Reviews Cancer, 2006, 6(8): 583-592.
doi: 10.1038/nrc1893 pmid: 16862189
[13] Lee C M, Tannock I F. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer, 2010, 10: 255.
doi: 10.1186/1471-2407-10-255 pmid: 20525277
[14] Kholodenko R V, Kalinovsky D V, Doronin I I, et al. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Current Medicinal Chemistry, 2019, 26(3): 396-426.
doi: 10.2174/0929867324666170817152554
[15] Wang C Y, Hong J X, Yang Z L, et al. Design of a novel fab-like antibody fragment with enhanced stability and affinity for clinical use. Small Methods, 2022, 6(2): 2100966.
doi: 10.1002/smtd.v6.2
[16] Ahmad Z A, Yeap S K, Ali A M, et al. scFv antibody: principles and clinical application. Clinical and Developmental Immunology, 2012, 2012: 1-15.
[17] Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(14): 6444-6448.
[18] Brinkmann U, Reiter Y, Jung S H, et al. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(16): 7538-7542.
[19] Gu J T, Guo R Q, Zhang L G, et al. Construction of a natural human fab phage antibody library and screening of phage antibody against PD-L1. International Journal of Sciences, 2022, 11(2): 29-38.
[20] Yau K Y F, Dubuc G, Li S H, et al. Affinity maturation of a VHH by mutational hotspot randomization. Journal of Immunological Methods, 2005, 297(1-2): 213-224.
doi: 10.1016/j.jim.2004.12.005
[21] Aiyar A, Xiang Y, Leis J. Site-directed mutagenesis using overlap extension PCR. Methods in Molecular Biology (Clifton, N.J.), 1996, 57: 177-191.
[22] Pullen G R, Fitzgerald M G, Hosking C S. Antibody avidity determination by ELISA using thiocyanate elution. Journal of Immunological Methods, 1986, 86(1): 83-87.
doi: 10.1016/0022-1759(86)90268-1 pmid: 3944471
[23] MacDonald R A, Hosking C S, Jones C L. The measurement of relative antibody affinity by ELISA using thiocyanate elution. Journal of Immunological Methods, 1988, 106(2): 191-194.
pmid: 3339255
[24] Cai Y X, Zhang J X, Lao X J, et al. Construction of a disulfide-stabilized diabody against fibroblast growth factor-2 and the inhibition activity in targeting breast cancer. Cancer Science, 2016, 107(8): 1141-1150.
doi: 10.1111/cas.12981 pmid: 27251178
[25] Jiang X J, Wang J, Deng X Y, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Molecular Cancer, 2019, 18(1): 10.
doi: 10.1186/s12943-018-0928-4 pmid: 30646912
[26] Kumar R, Parray H A, Shrivastava T, et al. Phage display antibody libraries: a robust approach for generation of recombinant human monoclonal antibodies. International Journal of Biological Macromolecules, 2019, 135: 907-918.
doi: S0141-8130(19)33085-5 pmid: 31170490
[27] Ho M, Pastan I. In vitro antibody affinity maturation targeting germline hotspots. Methods in Molecular Biology (Clifton, N.J.), 2009, 525: xiv,293.
[28] Chowdhury P S, Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nature Biotechnology, 1999, 17(6): 568-572.
doi: 10.1038/9872 pmid: 10385321
[29] Steidl S, Ratsch O, Brocks B, et al. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification. Molecular Immunology, 2008, 46(1): 135-144.
doi: 10.1016/j.molimm.2008.07.013
[30] Cembrola B, Ruzza V, Troise F, et al. Rapid affinity maturation of novel anti-PD-L1 antibodies by a fast drop of the antigen concentration and FACS selection of yeast libraries. BioMed Research International, 2019, 2019: 1-22.
[31] Xu M L, Lei G X, Chen M M, et al. Development of a novel, fully human, anti-PCSK 9 antibody with potent hypolipidemic activity by utilizing phage display-based strategy. EBioMedicine, 2021, 65: 103250.
doi: 10.1016/j.ebiom.2021.103250
[32] 杨铭, 程昕, 杜志荣, 等. 二硫键稳定的抗CD3/抗Pgp微型双功能抗体稳定性研究. 中国免疫学杂志, 2010, 26(12): 1078-1081.
Yang M, Cheng X, Du Z R, et al. Stability analyze of the disulphide bond stabilized anti-CD3/anti-Pgp diabody. Chinese Journal of Immunology, 2010, 26(12): 1078-1081.
[33] 杨雨琪, 金锐, 高子璐, 等. 二硫键稳定的抗CD3/抗CD19微型双功能抗体的表达及活性测定. 药物生物技术, 2014, 21(5): 389-392.
Yang Y Q, Jin R, Gao Z L, et al. Expression and activity determination of disulfide-stabilized anti-CD3/anti-CD 19 micro-bifunctional antibody. Pharmaceutical Biotechnology, 2014, 21(5): 389-392.
[1] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[2] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[3] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[4] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[5] 毛开云,范月蕾,王恒哲,王跃,陈大明. 全球PD-1/PD-L1单克隆抗体市场竞争格局 *[J]. 中国生物工程杂志, 2018, 38(11): 103-115.
[6] 王晓娜, 米志强, 安小平, 李建彬, 范华昊, 张文慧, 张博, 黄勇, 周丽君, 童贻刚. 从大容量噬菌体抗体库中筛选抗Acr蛋白人源单链抗体[J]. 中国生物工程杂志, 2012, 32(09): 22-27.
[7] 周敏 石必枝 顾健人 李宗海. 抗EGFRvIII噬菌体抗体库的构建和筛选[J]. 中国生物工程杂志, 2010, 30(04): 1-7.
[8] 李平 邓省亮 于洪侠 杨曙明. 半抗原特异性抗体的筛选及亲和力成熟[J]. 中国生物工程杂志, 2010, 30(02): 105-108.
[9] 魏薇 包福祥 何金生 付远辉 王小波 郑娴娴 张莹. 抗呼吸道合胞病毒融合蛋白单链抗体的筛选及初步鉴定[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[10] 杜丽,周丽君,潘秀颉,王豫,王欲晓,杨陟华,徐勤枝,张士猛,朱茂祥,周平坤. 从大容量噬菌体抗体库中筛选抗DNA-PKcs单链抗体[J]. 中国生物工程杂志, 2008, 28(9): 20-26.
[11] 唐晓明, 王清明, 杨俊涛, 陈吉中, 范国才, 汪思应. 大容量人天然抗体库的构建、鉴定及初步应用[J]. 中国生物工程杂志, 2005, 25(10): 17-24.
[12] 王尚资, 尹长城, 于文功, 管华诗, 黄华樑. 噬菌体抗体库技术与高通量筛选抗体[J]. 中国生物工程杂志, 2004, 24(2): 9-12.
[13] 吴小平, 阎锡蕴. 噬菌体抗体库技术制备高亲和力人抗体[J]. 中国生物工程杂志, 2002, 22(3): 29-32.