Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 75-82    DOI: 10.13523/j.cb.2210028
研究报告     
地衣芽孢杆菌BF-002高产芽孢的碳源/氮源浓度协同优化控制*
汪坤,许志国,丁健**()
江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Synergistic Optimization Control of Carbon Source/Nitrogen Source Concentration for High-yield Spores of Bacillus licheniformis BF-002
WANG Kun,XU Zhi-guo,DING Jian**()
Key Laboratory of Industrial Biotechnology (Ministry of Education) School of Bioengineering, Jiangnan University, Wuxi 214122, China
 全文: PDF(1226 KB)   HTML
摘要:

目的:探讨碳源和氮源浓度对地衣芽孢杆菌BF-002细胞生长和芽孢生成的协同调控作用,提高发酵液中的活细胞数量和芽孢数量。方法:在5 L发酵罐规模下,考察氮源浓度变化、碳源浓度变化对细胞生长和芽孢生成的影响规律,建立通过调节碳源浓度启动芽孢生成、促进营养体细胞向芽孢持续高效转化的方法,最终建立碳源/氮源协同流加控制策略,提高发酵结束时刻的活细胞和芽孢产量。结果表明:碳源充足、氮源浓度降低至临界水平(约0.5 g/L)或氮源浓度充足、碳源浓度降低至临界水平(约2.0 g/L),均可启动芽孢生成。协同调控碳源和氮源浓度,培养前24 h将葡萄糖和氨基氮浓度分别控制在 10 g/L和1.5 g/L,24 h后将葡萄糖和氨基氮的浓度维持在 2 g/L和0.5 g/L,持续至48 h,活细胞和芽孢数量分别达到2.88×1010 CFU/mL和2.56×1010 CFU/mL。与单独控制葡萄糖浓度的最优批次相比,芽孢数量提高2.91倍。结论:将对数生长期的碳源和氮源浓度同时控制在适宜水平,可以得到较高的活细胞量。之后,降低碳源和氮源浓度,将其维持在各自的临界水平,可以促进营养体细胞向芽孢持续高效转化。

关键词: 地衣芽孢杆菌芽孢碳源浓度氮源浓度    
Abstract:

Objective: To investigate the synergistic regulation of carbon and nitrogen sources on the cell growth and spore generation of Bacillus licheniformis BF-002, so as to increase the number of living cells and spores in fermentation broth. Methods: Under the scale of 5 L fermentor, the effects of nitrogen source concentration and carbon source concentration on cell growth and spore formation were investigated, and the method of starting spore formation and promoting the continuous and efficient transformation of vegetative cells into spores by adjusting carbon source concentration was established. Finally, the carbon source/nitrogen source synergistic feeding control strategy was established to improve the production of living cells and spores at the end of fermentation. The results showed that spore generation could be initiated when the concentration of carbon source decreased to the critical level (about 0.5 g/L) or when the concentration of carbon source decreased to the critical level (about 2.0 g/L). The concentrations of glucose and amino nitrogen were controlled at 10 g/L and 1.5 g/L, respectively before 24 h, and maintained at 2 g/L and 0.5 g/L after 24 h for 48 h. The number of living cells and spores reached 2.88×1010 CFU/mL and 2.56×1010 CFU/mL, respectively. Compared with the optimal batch with glucose concentration controlled alone, the number of spores increased 2.91 times. Conclusion: When the concentration of carbon source and nitrogen source in logarithmic growth period is controlled at an appropriate level, a higher amount of living cells can be obtained. Subsequently, by reducing the concentration of carbon source and nitrogen source and keeping them at their respective critical levels, we can promote the continuous and efficient transformation of vegetative cells into spores.

Key words: Bacillus licheniformis    Spores    Carbon source concentration    Nitrogen source concentration
收稿日期: 2022-10-18 出版日期: 2023-03-31
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2021YFC2101100);2020内蒙古自治区科技重大专项(2020ZD12101);2021内蒙古自治区“科技兴蒙”合作引导(2021SCG0347)
通讯作者: **丁健     E-mail: dingjian@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪坤
许志国
丁健

引用本文:

汪坤, 许志国, 丁健. 地衣芽孢杆菌BF-002高产芽孢的碳源/氮源浓度协同优化控制*[J]. 中国生物工程杂志, 2023, 43(2/3): 75-82.

WANG Kun, XU Zhi-guo, DING Jian. Synergistic Optimization Control of Carbon Source/Nitrogen Source Concentration for High-yield Spores of Bacillus licheniformis BF-002. China Biotechnology, 2023, 43(2/3): 75-82.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2210028        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/75

图1  不同葡萄糖浓度对芽孢形成的影响
图2  不同碳氮比下的活菌数、芽孢数、芽孢率、氨基氮浓度
图3  不同碳源添加量对芽孢形成的影响
图4  控制底物流加对芽孢形成的影响
图5  低碳源和氮源浓度对芽孢形成的影响
[1] Han G H, Bong K M, Kim J M, et al. Production and characterization of antifungal chitinase of Bacillus licheniformis isolated from yellow loess. KSBB Journal, 2014, 29(3): 131-138.
doi: 10.7841/ksbbj.2014.29.3.131
[2] Vanaki P, Zaboli F, Kaboosi H, et al. Isolation and identification of keratinolytic probiotic Bucillus licheniformis bacteria from the soil below poultry slaughterhouse waste. Brazilian Journal of Biology = Revista Brasleira De Biologia, 2022, 84: e257473.
doi: 10.1590/1519-6984.257473
[3] Sun Y J, Zhang X H. Functions of probiotics and its application in functional foods. Basic & Clinical Pharmacology & Toxicology, 2020, 126: 422-423.
[4] Dawood M A O, Koshio S, Abdel-Daim M M, et al. Probiotic application for sustainable aquaculture. Reviews in Aquaculture, 2019, 11(3): 907-924.
doi: 10.1111/raq.12272
[5] Baral K C, Bajracharya R, Lee S H, et al. Advancements in the pharmaceutical applications of probiotics: dosage forms and formulation technology. International Journal of Nanomedicine, 2021, 16: 7535-7556.
doi: 10.2147/IJN.S337427 pmid: 34795482
[6] 袁慧坤, 马倩, 袁文华, 等. 地衣芽孢杆菌的研究进展. 黑龙江畜牧兽医, 2019(11): 43-45.
Yuan H K, Ma Q, Yuan W H, et al. Research progress of Bacillus licheniformis. Heilongjiang Animal Science and Veterinary Medicine, 2019(11): 43-45.
[7] Chen Y C, Yu Y H. Bacillus licheniformis-fermented products improve growth performance and the fecal microbiota community in broilers. Poultry Science, 2020, 99(3): 1432-1443.
doi: 10.1016/j.psj.2019.10.061
[8] Biswas J K, Banerjee A, Rai M K, et al. Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation. Biodegradation, 2018, 29(4): 323-337.
doi: 10.1007/s10532-018-9835-z pmid: 29789975
[9] Ul Hassan Z, Al Thani R, Alnaimi H, et al. Investigation and application of Bacillus licheniformis volatile compounds for the biological control of toxigenic Aspergillus and Penicillium spp. ACS Omega, 2019, 4(17): 17186-17193.
doi: 10.1021/acsomega.9b01638
[10] Elshaghabee F M F, Rokana N, Gulhane R D, et al. Bacillus as potential probiotics: status, concerns, and future perspectives. Frontiers in Microbiology, 2017, 8: 1490.
doi: 10.3389/fmicb.2017.01490 pmid: 28848511
[11] Uono M, Hacker S, Stephano M A, et al. Technological development of biomass and the challenge of complete and efficient sporulation of Bacillus coagulans BVB5. Chemical Engineering Transactions, 2019, 75: 457-462.
[12] Jeong Y M, Lee J H, Chung H J, et al. Optimization of medium and fermentation conditions for mass production of Bacillus licheniformis SCD 121067 by statistical experimental design. KSBB Journal, 2010, 25(6): 539-546.
[13] Ming S, Zhang Y, Guan Y L, et al. Fermentation optimization of Bacillus licheniformis. IOP Conference Series: Materials Science and Engineering, 2019, 612(2): 022112.
[14] Veening J W, Murray H, Errington J. A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis. Genes & Development, 2009, 23(16): 1959-1970.
doi: 10.1101/gad.528209
[15] 许慧, 丁健, 史仲平. 地衣芽孢杆菌BF-002高产芽孢的氮源流加工艺研究. 中国生物工程杂志, 2022, 42(3): 47-54.
Xu H, Ding J, Shi Z P. Research on a fed-batch of nitrogen source fermentation process to improve the spores of Bacillus licheniformis BF-002. China Biotechnology, 2022, 42(3): 47-54.
[16] 董芳华, 王银环, 李珏, 等. 地衣芽孢杆菌活菌制剂芽孢数的快速检测方法研究. 中国现代应用药学, 2020, 37(11): 1333-1337.
Dong F H, Wang Y H, Li J, et al. Research on rapid detection method for spore counting of viable organism preparation of Bacillus licheniformis. Chinese Journal of Modern Applied Pharmacy, 2020, 37(11): 1333-1337.
[17] 孙佼文, 丁健, 贾禄强, 等. Schizochytrium sp. S31生产DHA底物流加策略及呼吸特性分析. 中国油脂, 2018, 43(2): 110-114.
Sun J W, Ding J, Jia L Q, et al. Substrate flow strategy for producing DHA by Schizochytrium sp. S31 and respiration characteristics analysis. China Oils and Fats, 2018, 43(2): 110-114.
[18] Lee D G, Jeon J M, Yang Y H, et al. The pH-stat butyric acid feeding strategy coupled with gas-stripping for n-butanol production by Clostridium beijerinckii. Waste and Biomass Valorization, 2020, 11(3): 1077-1084.
doi: 10.1007/s12649-018-0461-0
[1] 任明杰,王路路,申纪辉,范若辰,许永斌,张丽影,郑维,权春善. 解淀粉芽孢杆菌Q-426酚酸脱羧酶的克隆表达及酶学性质鉴定*[J]. 中国生物工程杂志, 2022, 42(6): 20-29.
[2] 许慧, 丁健, 史仲平. 地衣芽孢杆菌BF-002高产芽孢的氮源流加工艺研究*[J]. 中国生物工程杂志, 2022, 42(3): 47-54.
[3] 庞光武,梁智群. 海洋枯草芽孢杆菌产纤溶酶的诱变育种与发酵工艺优化*[J]. 中国生物工程杂志, 2022, 42(12): 27-36.
[4] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[5] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[6] 梅雨薇,杨子云,于樊,龙旭伟. 生物表面活性剂脂肽的发酵生产及抑菌应用研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 105-116.
[7] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[8] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[9] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[10] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[11] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[12] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[13] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[14] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[15] 刘宇帅,张杰,钟瑾,李晶,孟利强,张淑梅. 解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *[J]. 中国生物工程杂志, 2018, 38(10): 20-29.