Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 190-200    DOI: 10.13523/j.cb.2210018
行业分析     
靶向蛋白降解药物市场分析及建议*
刘少金1,**(),窦树珍1,王俊姝1,吴海明2,邹慧1
1 江西省科学院科技战略研究所 南昌 330096
2 瀚芯医疗科技(深圳)有限公司 深圳 518109
Market Analysis and Countermeasures for Targeted Protein Degradation Drugs
LIU Shao-jin1,**(),DOU Shu-zhen1,WANG Jun-shu1,WU Hai-ming2,ZOU Hui1
1 Institute of Science and Technology Strategy, Jiangxi Academy of Sciences, Nanchang 330096, China
2 Halocinch Medical Technology (Shenzhen) Co., Ltd, Shenzhen 518109, China
 全文: PDF(822 KB)   HTML
摘要:

靶向蛋白降解技术兼具高活性、高选择性和靶向“不可成药”靶点等诸多优势,打破了传统治疗手段的局限性,被认为是生物医药领域的革命性技术,已发展成为目前最前沿、最有效的疾病治疗策略之一。过去20年,基于靶向蛋白降解系统的各类降解技术层出不穷,其中以分子胶、蛋白水解靶向嵌合体为代表的小分子靶向蛋白降解药物取得了突飞猛进的发展,大量临床试验评价充分证实了靶向降解蛋白质的广泛性和有效性,为一些“无药可治”的疾病带来全新的潜在治疗手段,具有极大的开发利用价值和市场潜力。为进一步推动我国靶向蛋白降解药物行业创新发展,通过定量和定性结合的分析方法,深入剖析国内外靶向蛋白降解药物行业技术和产品研发现状及市场趋势,并从未来突破方向和体制机制创新等角度提出针对性建议。

关键词: 靶向蛋白降解分子胶蛋白水解靶向嵌合体    
Abstract:

Targeted protein degradation technology breaks the limitations of traditional therapies and is considered to be a revolutionary technology in the field of biomedicine due to its high activity, high selectivity and targeting of “undruggable”targets. It has developed into one of the most cutting-edge and effective disease treatment strategies. In the past two decades, various degradation technologies based on targeted protein degradation systems have been emerging. Among them, small molecule targeted protein degradation drugs, represented by molecular glues and proteolysis-targeting chimeras, have made rapid progress. A large number of clinical trials and evaluations have fully confirmed the universality and effectiveness of targeted protein degradation. The technology brings new potential treatment options for some “incurable” diseases, and has great development and utilization value and market potential. In order to further promote the innovation and development of China’s targeted protein degradation drug industry, quantitative and qualitative combination of analytical methods are used in this paper to deeply analyze the current situation and market trends of technology and product research and development of targeted protein degradation drugs industry domestically and overseas. Meanwhile, targeted countermeasures are put forward from the perspective of future breakthrough direction and institutional mechanism innovation.

Key words: Targeted protein degradation    Molecular glue    PROTAC
收稿日期: 2022-10-12 出版日期: 2023-03-31
ZTFLH:  Q816  
基金资助: *江西省科学院省级科技计划项目包干制试点示范项目(2021YSBG21025);江西省科学院省级科技计划项目包干制试点示范项目(2021YSBG22038);中国工程科技知识中心建设项目(CKCEST-2021-2-2)
通讯作者: **刘少金     E-mail: liusj9112@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘少金
窦树珍
王俊姝
吴海明
邹慧

引用本文:

刘少金, 窦树珍, 王俊姝, 吴海明, 邹慧. 靶向蛋白降解药物市场分析及建议*[J]. 中国生物工程杂志, 2023, 43(2/3): 190-200.

LIU Shao-jin, DOU Shu-zhen, WANG Jun-shu, WU Hai-ming, ZOU Hui. Market Analysis and Countermeasures for Targeted Protein Degradation Drugs. China Biotechnology, 2023, 43(2/3): 190-200.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2210018        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/190

通用名 中文名称 公司名 靶点 适应证 获授权年份
Thalidomide 沙利度胺 Grünenthal GmbH Tumor necrosis factor(TNF) 麻风结节性红斑、血液肿瘤、骨髓瘤 1956、1998、2006
Lenalidomide 来那度胺 Celgene Cereblon(CRBN) 多发性骨髓瘤 2005
Pomalidomide 泊马度胺 Celgene Cereblon(CRBN) 多发性骨髓瘤 2013
表1  全球靶向蛋白降解药物获批情况(截至2022年9月)
图1  2017~2021年来那度胺、泊马度胺全球市场规模
图2  2015~2022年PubMed收录分子胶有关论文数量
药物名称 研发公司 靶蛋白 适应证 临床试验阶段
CC-220 Celgene (BMS) IKZF1/3 多发性骨髓瘤 II期
CC-122 Celgene (BMS) IKZF1/3 血液系统和实体恶性肿瘤 II期
CFT-7455 C4 Therapeutics IKZF1/3 多发性骨髓瘤、淋巴癌 II期
E7070 Eisai DCAF15 成人实体瘤、白血病 II期
E7820 Eisai DCAF15 恶性实体瘤、直肠癌 II期
CC-92480 Celgene (BMS) IKZF1/3 多发性骨髓瘤 II期
CC-99282 Celgene (BMS) IKZF1/3 淋巴癌 I期
CC-90009 Celgene (BMS) GSPT1 急性髓系白血病 I期
DKY-709 Novartis IKZF2 鼻喉癌、结直肠癌、黑色素瘤等 I期
DT-2216 Dialectic BCL-xL 血液癌、实体瘤 I期
BAY-2666605 Bayer IKZF1/3 黑色素瘤、肿瘤 I期
BTX-1188 BioTheryX GSPT1、IKZF1/3 血液系统和实体恶性肿瘤 I期
ICP-490 诺诚健华 SEL1L2 多发性骨髓瘤等肿瘤 I期
KPG-818 康朴生物 IKZF1/3 系统性红斑狼疮 Ib/IIa期
KPG-121 康朴生物 IKZF1/3、CK1α 转移性去势抵抗性前列腺癌 I期
TQB-3820 正大天晴 IKZF1/3 恶性血液肿瘤 I期
表2  全球分子胶降解剂临床试验数据(截至2022年9月)
图3  2015~2022年PubMed收录PROTACs有关论文数量
药物名称 研发公司 靶蛋白 适应证 临床试验阶段
ARV-110 Arvinas AR 前列腺癌 II期
ARV-471 Arvinas ER 乳腺癌 II期
ARV-766 Arvinas AR 前列腺癌 I期
KT-474 Kymera/Sanofi IRAK4 免疫性炎症性疾病 I期
KT-333 Kymera STAT3 血液肿瘤和实体瘤 I期
KT-413 Kymera IRAK4 B细胞淋巴瘤 I期
CC-94676 BMS AR 前列腺癌 I期
NX-2127 Nurix BTK B细胞恶性肿瘤 I期
NX-5948 Nurix BTK B细胞恶性肿瘤 I期
FHD-609 Foghorn BRD9 晚期滑膜肉瘤 I期
AR-LDD C4 Therapeutics AR 前列腺癌 I期
DT-2216 Dialectic BCL-xL 血液癌症和实体瘤 I期
HSK-29116 海思科 BTK B细胞恶性肿瘤 I期
HP-518 海创药业 AR 前列腺癌 I期
AC-0682 冰洲石生物 ER HR阳性乳腺癌 I期
AC-0176 冰洲石生物 AR 前列腺癌 I期
LNK-01002 凌科药业 RasGTPase 急性髓系白血病 I期
GT-20029 开拓药业 AR 雄激素性脱发、痤疮 I期
BGB-16673 百济神州 BTK B细胞淋巴瘤 I期
RNK-05047 珃诺生物 BRD4 晚期实体瘤和淋巴瘤 1/2期
表3  全球PROTACs药物临床试验数据(截至2022年9月)
图4  2016~2022年全球和中国抗肿瘤药物市场规模预测
[1] Burslem G M, Crews C M. Small-molecule modulation of protein homeostasis. Chemical Reviews, 2017, 117(17): 11269-11301.
doi: 10.1021/acs.chemrev.7b00077 pmid: 28777566
[2] Verdine G L, Walensky L D. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2007, 13(24): 7264-7270.
doi: 10.1158/1078-0432.CCR-07-2184
[3] Samarasinghe K T G, Crews C M. Targeted protein degradation: a promise for undruggable proteins. Cell Chemical Biology, 2021, 28(7): 934-951.
doi: 10.1016/j.chembiol.2021.04.011 pmid: 34004187
[4] Cromm P M, Crews C M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chemical Biology, 2017, 24(9): 1181-1190.
doi: S2451-9456(17)30187-3 pmid: 28648379
[5] Naito M. Targeted protein degradation and drug discovery. The Journal of Biochemistry, 2022, 172(2): 61-69.
doi: 10.1093/jb/mvac041
[6] 张晓元, 张艳艳, 孙晓康, 等. 靶向蛋白质降解技术研究进展. 生物化学与生物物理进展, 2022, 49(1): 171-182.
Zhang X Y, Zhang Y Y, Sun X K, et al. Research progress of targeted protein degradation technology. Progress in Biochemistry and Biophysics, 2022, 49(1): 171-182.
[7] Wang C, Zhang Y J, Zhang T T, et al. Proteolysis-targeting chimaeras (PROTACs) as pharmacological tools and therapeutic agents: advances and future challenges. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37(1): 1667-1693.
doi: 10.1080/14756366.2022.2076675 pmid: 35702041
[8] Xi J Y, Zhang R Y, Chen K, et al. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorganic Chemistry, 2022, 125: 105848.
doi: 10.1016/j.bioorg.2022.105848
[9] Zhao L, Zhao J, Zhong K H, et al. Targeted protein degradation: mechanisms, strategies and application. Signal Transduction and Targeted Therapy, 2022, 7: 113.
doi: 10.1038/s41392-022-00966-4 pmid: 35379777
[10] Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell, 1994, 79(1): 13-21.
doi: 10.1016/0092-8674(94)90396-4 pmid: 7923371
[11] Ballabio A, Bonifacino J S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nature Reviews Molecular Cell Biology, 2020, 21(2): 101-118.
doi: 10.1038/s41580-019-0185-4 pmid: 31768005
[12] Eldridge A G, O’Brien T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death & Differentiation, 2010, 17(1): 4-13.
[13] Gustafson J L, Neklesa T K, Cox C S, et al. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angewandte Chemie (International Ed in English), 2015, 54(33): 9659-9662.
doi: 10.1002/anie.v54.33
[14] Weagel E G, Foulks J M, Siddiqui A, et al. Molecular glues: enhanced protein-protein interactions and cell proteome editing. Medicinal Chemistry Research, 2022, 31(7): 1068-1087.
doi: 10.1007/s00044-022-02882-2
[15] Sakamoto K M, Kim K B, Kumagai A, et al. Protacs:Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(15): 8554-8559.
[16] Metzger M B, Pruneda J N, Klevit R E, et al. RING-type E3 ligases: master manipulators of E 2 ubiquitin-conjugating enzymes and ubiquitination. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2014, 1843(1): 47-60.
doi: 10.1016/j.bbamcr.2013.05.026
[17] Luh L M, Scheib U, Juenemann K, et al. Prey for the proteasome: targeted protein degradation-a medicinal chemist’s perspective. Angewandte Chemie (International Ed in English), 2020, 59(36): 15448-15466.
[18] Banik S M, Pedram K, Wisnovsky S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature, 2020, 584(7820): 291-297.
doi: 10.1038/s41586-020-2545-9
[19] Cotton A D, Nguyen D P, Gramespacher J A, et al. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. Journal of the American Chemical Society, 2021, 143(2): 593-598.
doi: 10.1021/jacs.0c10008 pmid: 33395526
[20] Zhang H, Han Y, Yang Y F, et al. Covalently engineered nanobody chimeras for targeted membrane protein degradation. Journal of the American Chemical Society, 2021, 143(40): 16377-16382.
doi: 10.1021/jacs.1c08521 pmid: 34596400
[21] Takahashi D, Moriyama J, Nakamura T, et al. AUTACs: cargo-specific degraders using selective autophagy. Molecular Cell, 2019, 76(5): 797-810.e10.
doi: S1097-2765(19)30694-X pmid: 31606272
[22] Fu Y H, Chen N X, Wang Z Y, et al. Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Research, 2021, 31(9): 965-979.
doi: 10.1038/s41422-021-00532-7 pmid: 34239073
[23] Miao Y Y, Gao Q Q, Mao M H, et al. Bispecific aptamer chimeras enable targeted protein degradation on cell membranes. Angewandte Chemie (International Ed in English), 2021, 60(20): 11267-11271.
doi: 10.1002/anie.v60.20
[24] Ji C H, Kim H Y, Lee M J, et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nature Communications, 2022, 13: 904.
doi: 10.1038/s41467-022-28520-4 pmid: 35173167
[25] Lin J Y, Jin J M, Shen Y W, et al. Emerging protein degradation strategies: expanding the scope to extracellular and membrane proteins. Theranostics, 2021, 11(17): 8337-8349.
doi: 10.7150/thno.62686 pmid: 34373745
[26] Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science, 2010, 327(5971): 1345-1350.
doi: 10.1126/science.1177319 pmid: 20223979
[27] Chanan-Khan A A, Swaika A, Paulus A, et al. Pomalidomide: the new immunomodulatory agent for the treatment of multiple myeloma. Blood Cancer Journal, 2013, 3(9): e143.
doi: 10.1038/bcj.2013.38
[28] Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia, 2012, 26(11): 2326-2335.
doi: 10.1038/leu.2012.119 pmid: 22552008
[29] Fischer E S, Böhm K, Lydeard J R, et al. Structure of the DDB1-CRBN E 3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512(7512): 49-53.
doi: 10.1038/nature13527
[30] Ozawa Y, Sugi N H, Nagasu T, et al. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. European Journal of Cancer, 2001, 37(17): 2275-2282.
pmid: 11677118
[31] Funahashi Y, Sugi N H, Semba T, et al. Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin alpha2 subunit on endothelium. Cancer Research, 2002, 62(21): 6116-6123.
pmid: 12414636
[32] Abbate F, Casini A, Owa T, et al. Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorganic & Medicinal Chemistry Letters, 2004, 14(1): 217-223.
doi: 10.1016/j.bmcl.2003.09.062
[33] Mayor-Ruiz C, Bauer S, Brand M, et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nature Chemical Biology, 2020, 16(11): 1199-1207.
doi: 10.1038/s41589-020-0594-x
[34] Słabicki M, Kozicka Z, Petzold G, et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature, 2020, 585(7824): 293-297.
doi: 10.1038/s41586-020-2374-x
[35] Winter G E, Buckley D L, Paulk J, et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241): 1376-1381.
doi: 10.1126/science.aab1433 pmid: 25999370
[36] Békés M, Langley D R, Crews C M. PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 2022, 21(3): 181-200.
doi: 10.1038/s41573-021-00371-6
[1] 靳倩, 时梦, 刘占彪, 张毅, 朱思庆, 石晶晶, 宗星星, 陈学军, 李丽琴. 亚急性梭曼染毒豚鼠颈部脊髓差异表达蛋白分析[J]. 中国生物工程杂志, 2023, 43(2/3): 64-74.
[2] 王宇航, 陈学明, 刘俗生, 阮志军, 张敏, 宋春丽, 尹丰, 李子刚. 一种多肽固相合成方法与纯化策略研究[J]. 中国生物工程杂志, 2023, 43(1): 35-41.
[3] 汪琨,赵福运,徐云飞,袁小凤,赵伟春. 茄病镰刀菌单克隆抗体的制备及胶体金免疫层析试纸条的研发*[J]. 中国生物工程杂志, 2022, 42(7): 54-61.
[4] 鲍奕恺,洪皓飞,施杰,周志昉,吴志猛. 靶向PSMA多价纳米抗体的制备及其生物学活性表征*[J]. 中国生物工程杂志, 2022, 42(5): 37-45.
[5] 陈阳, 刘彤, 张佳琦, 廖化新, 林跃智, 王晓钧, 王亚玉. 基于单个B细胞抗体基因扩增技术筛选马IgG1单克隆抗体*[J]. 中国生物工程杂志, 2022, 42(4): 17-23.
[6] 李开通, 刘金青, 蔡望伟, 肖曼, 沈倍奋, 王晶, 冯健男. 靶向人白介素-6蛋白的治疗性单克隆抗体研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 58-67.
[7] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[8] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[9] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[10] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[11] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[12] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[13] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[14] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[15] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.