Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 180-189    DOI: 10.13523/j.cb.2209068
论坛     
合成生物活性物质的生物安全风险和应对策略研究*
宁峻涛1,邹诗施2,左锟澜3,吴宗震3,李晶4,徐雁龙5,刘欢3,6,**()
1 国家知识产权局知识产权发展研究中心 北京 100088
2 武汉大学 武汉 430072
3 中国科学技术大学 合肥 230026
4 中国疾病预防控制中心 北京 102206
5 中国科学院大学 北京 100049
6 中国科学院武汉病毒研究所 武汉 430071
Biosafety Risks and Countermeasures of Active Substance in Synthesis Biology
NING Jun-tao1,ZOU Shi-shi2,ZUO Kun-lan3,WU Zong-zhen3,Li Jing4,XU Yan-long5,LIU Huan3,6,**()
1 Intellectual Property Development & Research Center, China National Intellectual Property Administration, Beijing 100088, China
2 Wuhan University, Wuhan 430072, China
3 School of Humanities and Social Sciences, University of Science and Technology of China, Hefei 230026, China
4 Office of Laboratory Management, Chinese Center for Disease Control and Prevention, Beijing 102206, China
5 College of Humanities, University of Chinese Academy of Sciences, Beijing 100049, China
6 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
 全文: PDF(525 KB)   HTML
摘要:

生物代谢工程以微生物为载体,以生命系统各个阶段形成的代谢产物为天然模板和设计蓝图,采用合成生物技术合成活性物质。这些活性物质中部分有害或具有潜在安全威胁,如毒素和蛋白质复合物、可用于临床治疗也可危害健康的药物分子及其衍生物、国际公约限制使用的化学制剂等,可能对生物安全产生不利影响。通过对采取天然代谢通路与非天然代谢通路生物合成的活性物质、化学合成的活性物质和活性物质递送技术相关的合成生物学安全风险的梳理分析,为促进活性物质的合成生物创新发展和应用提出科学应对策略。

关键词: 生物安全合成生物学活性物质    
Abstract:

Active substances are often synthesized by microorganisms as carriers in biological metabolic engineering at all times, and the formation of metabolites in all stages of the life system provides a natural template and design blueprint for the development of synthetic biotechnology. If these metabolites involve harmful active substances or potential safety threats, such as toxins and protein complexes that are toxic to humans, animals and plants, drug molecules and their derivatives that can be used for clinical treatment and can also lead to dysfunction and health hazards, and chemicals that are prohibited or restricted by international conventions, they will have adverse effects on biosafety. Through reviewing and analyzing the safety risks in synthetic biology related to active substances such as natural metabolic pathway biosynthetic active substances, non-natural metabolic pathway biosynthetic active substances, chemosynthetic active substances and active substance delivery technology, this paper puts forward countermeasure strategy for promoting the innovative development and application fields of active substances in synthetic biology.

Key words: Biosafety    Synthetic biology    Active substance
收稿日期: 2022-09-26 出版日期: 2023-03-31
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2018YFA0902402);中国科学院“高质量数据池和数据产品服务体系建设”项目(2019WQZX012);中国疾病预防控制中心“总体国家安全观下病原微生物实验室生物安全史研究”(BB2110240075)
通讯作者: **刘欢     E-mail: liuhuan520@ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宁峻涛
邹诗施
左锟澜
吴宗震
李晶
徐雁龙
刘欢

引用本文:

宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.

NING Jun-tao, ZOU Shi-shi, ZUO Kun-lan, WU Zong-zhen, Li Jing, XU Yan-long, LIU Huan. Biosafety Risks and Countermeasures of Active Substance in Synthesis Biology. China Biotechnology, 2023, 43(2/3): 180-189.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209068        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/180

[1] 高磊, 于欣水, 雷晓光. 天然产物生物合成:探索大自然合成次生代谢产物的奥秘. 大学化学, 2019, 34(12): 45-53.
Gao L, Yu X S, Lei X G. Biosynthesis of natural products: exploring the secret of how nature produces the secondary metabolites. University Chemistry, 2019, 34(12): 45-53.
[2] Pyne M E, Kevvai K, Grewal P S, et al. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Nature Communications, 2020, 11: 3337.
doi: 10.1038/s41467-020-17172-x pmid: 32620756
[3] Nakagawa A, Minami H, Kim J S, et al. A bacterial platform for fermentative production of plant alkaloids. Nature Communications, 2011, 2: 326.
doi: 10.1038/ncomms1327 pmid: 21610729
[4] DeLoache W C, Russ Z N, Narcross L, et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465-471.
doi: 10.1038/nchembio.1816 pmid: 25984720
[5] Jamieson C S, Misa J, Tang Y, et al. Biosynthesis and synthetic biology of psychoactive natural products. Chemical Society Reviews, 2021, 50(12): 6950-7008.
doi: 10.1039/d1cs00065a pmid: 33908526
[6] Tehran D A, Pirazzini M. Novel botulinum neurotoxins: exploring underneath the iceberg tip. Toxins, 2018, 10(5): 190.
doi: 10.3390/toxins10050190
[7] Masuyer G, Chaddock J A, Foster K A, et al. Engineered botulinum neurotoxins as new therapeutics. Annual Review of Pharmacology and Toxicology, 2014, 54: 27-51.
doi: 10.1146/annurev-pharmtox-011613-135935 pmid: 24016211
[8] 陈振. 基于非天然途径的二元醇绿色生物合成//中国生物工程学会青年工作委员会. 中国生物工程学会第二届青年科技论坛暨首届青年工作委员会学术年会摘要集. 2017: 93.
Chen Z. Green biosynthesis of diols based on unnatural pathways//Youth Working Committee on Chinese Society of Biotechnology. Proceedings of China Society of Biotechnology Young Scientists Forum Ⅱ. 2017: 93.
[9] Jacquet P, Rémy B, Bross R P T, et al. Enzymatic decontamination of G-type, V-type and novichok nerve agents. International Journal of Molecular Sciences, 2021, 22(15): 8152.
doi: 10.3390/ijms22158152
[10] Job L, Köhler A, Escher B, et al. A catalytic bioscavenger with improved stability and reduced susceptibility to oxidation for treatment of acute poisoning with neurotoxic organophosphorus compounds. Toxicology Letters, 2020, 321: 138-145.
doi: S0378-4274(19)30424-2 pmid: 31891759
[11] Lee N R, Yun H, Lee C, et al. Engineered recombinant PON1-OPH fusion hybrids: potentially effective catalytic bioscavengers against organophosphorus nerve agent analogs. Journal of Microbiology and Biotechnology, 2021, 31(1): 144-153.
doi: 10.4014/jmb.2006.06044 pmid: 33144547
[12] Bzdrenga J, Trenet E, Chantegreil F, et al. A thermophilic bacterial esterase for scavenging nerve agents: a kinetic, biophysical and structural study. Molecules (Basel, Switzerland), 2021, 26(3): 657.
doi: 10.3390/molecules26030657
[13] Song T Y, Wang F L, Xiong S S, et al. Surface display of organophosphorus-degrading enzymes on the recombinant spore of Bacillus subtilis. Biochemical and Biophysical Research Communications, 2019, 510(1): 13-19.
doi: 10.1016/j.bbrc.2018.12.077
[14] Pandit A V, Srinivasan S, Mahadevan R. Redesigning metabolism based on orthogonality principles. Nature Communications, 2017, 8: 15188.
doi: 10.1038/ncomms15188 pmid: 28555623
[15] Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nature Chemical Biology, 2011, 7(7): 445-452.
doi: 10.1038/nchembio.580
[16] 张金宏, 崔志勇, 祁庆生, 等. 解脂耶氏酵母表达调控工具的开发及天然产物合成的研究进展. 生物工程学报, 2022, 38(2): 478-505.
Zhang J H, Cui Z Y, Qi Q S, et al. The recent advances in developing gene editing and expression tools and the synthesis of natural products in Yarrowia lipolytica. Chinese Journal of Biotechnology, 2022, 38(2): 478-505.
[17] Groenewald M, Boekhout T, Neuvéglise C, et al. Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology, 2014, 40(3): 187-206.
doi: 10.3109/1040841X.2013.770386 pmid: 23488872
[18] Arias-Gómez A, Godoy A, Portilla J. Functional pyrazolo[1, 5-a]pyrimidines: current approaches in synthetic transformations and uses As an antitumor scaffold. Molecules (Basel, Switzerland), 2021, 26(9): 2708.
doi: 10.3390/molecules26092708
[19] He H Y, Zhao J N, Jia R, et al. Novel pyrazolo[3, 4-d]pyrimidine derivatives as potential antitumor agents: exploratory synthesis, preliminary structure-activity relationships, and in vitro biological evaluation. Molecules (Basel, Switzerland), 2011, 16(12): 10685-10694.
doi: 10.3390/molecules161210685
[20] Rango E, D’Antona L, Iovenitti G, et al. Si113-prodrugs selectively activated by plasmin against hepatocellular and ovarian carcinoma. European Journal of Medicinal Chemistry, 2021, 223: 113653.
doi: 10.1016/j.ejmech.2021.113653
[21] Radi M, Dreassi E, Brullo C, et al. Design, synthesis, biological activity, and ADME properties of pyrazolo[3, 4-d]pyrimidines active in hypoxic human leukemia cells: a lead optimization study. Journal of Medicinal Chemistry, 2011, 54(8): 2610-2626.
doi: 10.1021/jm1012819
[22] D’Antona L, Dattilo V, Catalogna G, et al. In preclinical model of ovarian cancer, the SGK 1 inhibitor SI113 counteracts the development of paclitaxel resistance and restores drug sensitivity. Translational Oncology, 2019, 12(8): 1045-1055.
doi: 10.1016/j.tranon.2019.05.008
[23] Åstrand A, Guerrieri D, Vikingsson S, et al. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors: on-target receptor potency and efficacy, and off-target effects. Forensic Science International, 2020, 317: 110553.
doi: 10.1016/j.forsciint.2020.110553
[24] Gee P, Schep L J, Jensen B P, et al. Case series: toxicity from 25B-NBOMe: a cluster of N-bomb cases. Clinical Toxicology (Philadelphia, Pa), 2016, 54(2): 141-146.
[25] Poulie C B M, Jensen A A, Halberstadt A L, et al. DARK classics in chemical neuroscience: NBOMes. ACS Chemical Neuroscience, 2019, 11(23): 3860-3869.
doi: 10.1021/acschemneuro.9b00528
[26] Wagmann L, Richter L H J, Kehl T, et al. In vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures. Analytical and Bioanalytical Chemistry, 2019, 411(19): 4751-4763.
doi: 10.1007/s00216-018-1558-9 pmid: 30617391
[27] Ai Y J, Xie R X, Xiong J L, et al. Microfluidics for biosynthesizing: from droplets and vesicles to artificial cells. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(9): e1903940.
[28] Dallinger D, Gutmann B, Kappe C O. The concept of chemical generators: on-site on-demand production of hazardous reagents in continuous flow. Accounts of Chemical Research, 2020, 53(7): 1330-1341.
doi: 10.1021/acs.accounts.0c00199 pmid: 32543830
[29] Rudokas M, Najlah M, Albed Alhnan M, et al. Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Medical Principles and Practice, 2016, 25(Suppl. 2): 60-72.
doi: 10.1159/000445116
[30] Qiu Y S, Man R C H, Liao Q Y, et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. Journal of Controlled Release, 2019, 314: 102-115.
doi: S0168-3659(19)30591-7 pmid: 31629037
[31] Willaert W, Sessink P, Ceelen W. Occupational safety of pressurized intraperitoneal aerosol chemotherapy (PIPAC). Pleura and Peritoneum, 2017, 2(3): 121-128.
doi: 10.1515/pp-2017-0018 pmid: 30911641
[32] Lindsay K E, Vanover D, Thoresen M, et al. Aerosol delivery of synthetic mRNA to vaginal mucosa leads to durable expression of broadly neutralizing antibodies against HIV. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2020, 28(3): 805-819.
doi: 10.1016/j.ymthe.2020.01.002
[33] Rezvani M, Mohammadnejad J, Narmani A, et al. Synthesis and in vitro study of modified chitosan-polycaprolactam nano complex as delivery system. International Journal of Biological Macromolecules, 2018, 113: 1287-1293.
doi: S0141-8130(17)35025-0 pmid: 29481956
[34] Gupta R, Chen Y, Xie H. In vitro dissolution considerations associated with nano drug delivery systems. WIREs Nanomedicine and Nanobiotechnology, 2021, 13(6): e1732.
[35] Scher G, Schnell M J. Rhabdoviruses as vectors for vaccines and therapeutics. Current Opinion in Virology, 2020, 44: 169-182.
doi: 10.1016/j.coviro.2020.09.003 pmid: 33130500
[36] Rahbarghazi R, Jabbari N, Sani N A, et al. Tumor-derived extracellular vesicles: reliable tools for Cancer diagnosis and clinical applications. Cell Communication and Signaling: CCS, 2019, 17(1): 73.
doi: 10.1186/s12964-019-0390-y
[37] Wang J, Chen D, Ho E A. Challenges in the development and establishment of exosome-based drug delivery systems. Journal of Controlled Release, 2021, 329: 894-906.
doi: 10.1016/j.jconrel.2020.10.020 pmid: 33058934
[38] Huang X L, Zhuang J, Teng X, et al. The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species. Biomaterials, 2010, 31(24): 6142-6153.
doi: 10.1016/j.biomaterials.2010.04.055 pmid: 20510446
[39] He Q J, Zhang Z W, Gao Y, et al. Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small (Weinheim an Der Bergstrasse, Germany), 2009, 5(23): 2722-2729.
doi: 10.1002/smll.v5:23
[40] 李晓军, 张万斌, 高栓虎. 复杂天然产物全合成: 化学合成与生物合成结合的策略. 有机化学, 2018, 38(9): 2185-2198.
doi: 10.6023/cjoc201806019
Li X J, Zhang W B, Gao S H. Total synthesis of complex natural products: combination of chemical synthesis and biosynthesis strategies. Chinese Journal of Organic Chemistry, 2018, 38(9): 2185-2198.
doi: 10.6023/cjoc201806019
[41] 沈秀敏, 毛淑梅. 对基因工程技术的辩证分析. 医学与社会, 2001, 14(6): 35-37.
Shen X M, Mao S M. The dialectical analysis of genetic engineering technique. Medicine and Society, 2001, 14(6): 35-37.
[42] 王凯峰, 王金鹏, 韦萍, 等. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物. 化工学报, 2021, 72(1): 351-365.
doi: 10.11949/0438-1157.20201043
Wang K F, Wang J P, Wei P, et al. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives. CIESC Journal, 2021, 72(1): 351-365.
doi: 10.11949/0438-1157.20201043
[43] Wong L, Engel J, Jin E Q, et al. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metabolic Engineering Communications, 2017, 5: 68-77.
doi: 10.1016/j.meteno.2017.09.001
[44] Lee S K, Chou H, Ham T S, et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 2008, 19(6): 556-563.
doi: 10.1016/j.copbio.2008.10.014 pmid: 18996194
[45] 冯长启, 卢彩虹, 郭红艳, 等. 简述与《禁止化学武器公约》相关的生化融合技术. 国防科技, 2014, 35(2): 53-55, 52.
Feng C Q, Lu C H, Guo H Y, et al. Discussion of the technics of convergence between chemistry and biology related to the chemical weapons convention. National Defense Science & Technology, 2014, 35(2): 53-55, 52.
[46] 刘磊, 黄卉. 尼克松政府对生化武器的政策与《禁止生物武器公约》. 史学月刊, 2014(4): 62-71, 136.
Liu L, Huang H. The Nixon administration’s policy on biological and chemical weapons and the biological weapons convention. Journal of Historical Science, 2014(4): 62-71, 136.
[47] Alshawwa S Z, Kassem A A, Farid R M, et al. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 2022, 14(4): 883.
doi: 10.3390/pharmaceutics14040883
[48] 马延和, 江会锋, 娄春波, 等. 合成生物与生物安全. 中国科学院院刊, 2016, 31(4): 432-438.
Ma Y H, Jiang H F, Lou C B, et al. Synthetic life and biosecurity. Bulletin of Chinese Academy of Sciences, 2016, 31(4): 432-438.
[1] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[2] 郭彦彤,刘仲明,张海燕,张宝. 分子即时检测(POCT)技术及其在新发传染病中的应用*[J]. 中国生物工程杂志, 2022, 42(9): 50-57.
[3] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[4] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[5] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[6] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[7] 赵赤鸿,苏丹丹,厉春,吴宗震,左锟澜,徐雁龙,刘欢. 总体国家安全观下合成生物学风险和应对策略研究*[J]. 中国生物工程杂志, 2022, 42(12): 120-128.
[8] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[9] 李慧敏,贾斌,李霞,刘夺. 合成芳香族化合物的酵母底盘改造策略*[J]. 中国生物工程杂志, 2022, 42(10): 80-92.
[10] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[11] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[12] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[13] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[14] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[15] 马丽丽,易盼盼,敖妮花,焦洪涛,雷瑞鹏,刘欢. 基于学科类别和富集分析的生物安全研究领域学科交叉研究*[J]. 中国生物工程杂志, 2021, 41(12): 116-124.