Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 165-173    DOI: 10.13523/j.cb.2208031
综述     
革兰氏阳性菌群体感应系统研究进展
胡秀玲,熊利洋,魏云林*()
昆明理工大学生命科学与技术学院 昆明 650500
Research Progresses on Quorum Sensing System Involved in Gram Positive Bacteria
HU Xiu-ling,XIONG Li-yang,WEI Yun-lin*()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(1679 KB)   HTML
摘要:

细菌利用群体感应系统进行细菌间以及细菌与宿主间的交流,革兰氏阳性与阴性菌的群体感应系统差异显著,阳性菌的群体感应系统主要由寡肽类信号分子和受体蛋白组成,对细菌致病性等相关生理特性具有重要作用。就常见的革兰氏阳性菌:蜡样芽孢杆菌、枯草芽孢杆菌、金黄色葡萄球菌和肺炎链球菌的群体感应系统的基因组成、信号分子及其调控机制特点的研究进行了总结,对群体感应系统在细菌营养吸收、生物膜形成、毒力因子和孢子产生等重要生理活动的调节机制进行了重点阐述,为革兰氏阳性菌群体感应的相关研究提供了有益参考。

关键词: 革兰氏阳性菌群体感应系统信号分子基因调控感染机制    
Abstract:

Quorum sensing system was not just involved in interbacterial communication but also involved in communication between bacteria and their hosts. It has been demonstrated that the difference in quorum sensing system invoved in gram positive and gram negative bacteria was statistically significan. The quorum sensing system of positive bacteria has played important roles in many of the physiological characteristics such as pathogenicity, which was composed of oligopeptide signal molecules and receptor proteins. In this paper the current research status and advances in gene composition, signal molecular characteristics and regulation mechanisms of quorum sensing system involved in typical gram-positive bacteria, such as Bacillus cereus, Bacillus subtilis, Staphylococcus aureus and Streptococcus pneumoniae were summarized. The regulatory mechanisms of quorum sensing system invovled in important physiological activities of bacteria, such as nutrient absorption, biofilm formation, virulence factor production, spore production and cytidine production were illustrated. This study will provide a reference for the future research on quorum sensing of gram-positive bacteria.

Key words: Gram-positive bacteria    Quorum sensing system    Signal molecule    Gene regulation    Infection mechanism
收稿日期: 2022-08-25 出版日期: 2023-03-31
ZTFLH:  Q819  
通讯作者: *魏云林     E-mail: homework18@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡秀玲
熊利洋
魏云林

引用本文:

胡秀玲, 熊利洋, 魏云林. 革兰氏阳性菌群体感应系统研究进展[J]. 中国生物工程杂志, 2023, 43(2/3): 165-173.

HU Xiu-ling, XIONG Li-yang, WEI Yun-lin. Research Progresses on Quorum Sensing System Involved in Gram Positive Bacteria. China Biotechnology, 2023, 43(2/3): 165-173.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2208031        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/165

图1  QS系统调控基因表达的三种类型
图2  G+ QS系统机制
菌株 信号分子 合酶 特定表型 参考文献
苏云金芽孢杆菌(Bacillus thuringiensis) PapR PapRb 胞外酶 [13]
NprX NprRBb,c 毒素、孢子形成 [14]
肺炎链球菌(Streptococcus pneumoniae) CSP ComCb 毒性、自溶 [15]
枯草芽孢杆菌(Bacillus subtilis) CSF RapC 孢子形成、生物膜形成 [16-17]
ComX信息素 ComP 菌体群集运动
植物乳杆菌(Lactobacillus plantarum) PLNC8IF 细菌素产生 [18]
蜡样芽胞杆菌(Bacillus cereus) PlcR PaPR 毒力因子表达 [19]
LuxS AI-2 生物膜产生
Rap-Phr RaP 孢子形成
金黄色葡萄球菌(Staphylococcus aureus) Agr 半胱氨酸蛋白酶 定植、毒力因子表达、生物膜形成 [20]
粪肠球菌(Enterococcus faecalis) 明胶酶生物合成激活
信息素(GBAP)
胞外蛋白酶(SprE) 毒力和蛋白酶产生 [21]
灰链霉菌(Streptomyces griseus) γ-丁内酯 次生代谢产物 [22]
艰难梭菌(Clostridium difficile) 4-OH-5-甲基-3(2)-H-呋喃 CdsB 毒素产生 [23]
单增李斯特菌(Listeria monocytogenes) AIP 毒力 [24]
表1  部分G+的QS系统及相关表型
图3  蜡样芽孢杆菌的PlcR-PapR QS通路
图4  枯草芽孢杆菌的ComQXPA QS通路
图5  金黄色葡萄球菌的Agr QS通路
图6  肺炎链球菌的ComABCDE QS通路
[1] Guo M H, Fang Z J, Sun L J, et al. Regulation of thermostable direct hemolysin and biofilm formation of Vibrio parahaemolyticus by quorum-sensing genes luxM and luxS. Current Microbiology, 2018, 75(9): 1190-1197.
doi: 10.1007/s00284-018-1508-y
[2] Hunt K, Butler F, Jordan K. Uncoupling ‘growth’ and ‘increasing cell numbers’ of Listeria monocytogenes in naturally contaminated milk from a sub-clinically infected cow. Food Control, 2017, 71: 228-233.
doi: 10.1016/j.foodcont.2016.07.002
[3] Verdugo-Fuentes A, Gastélum G, Rocha J, et al. Multiple and overlapping functions of quorum sensing proteins for cell specialization in Bacillus species. Journal of Bacteriology, 2020, 202(10): e00721-e00719.
[4] Basavaraju M, Sisnity V S, Palaparthy R, et al. Quorum quenching: signal jamming in dental plaque biofilms. Journal of Dental Sciences, 2016, 11(4): 349-352.
doi: 10.1016/j.jds.2016.02.002 pmid: 30894996
[5] Banerjee G, Ray A K. The talking language in some major Gram-negative bacteria. Archives of Microbiology, 2016, 198(6): 489-499.
doi: 10.1007/s00203-016-1220-x pmid: 27062655
[6] Ding Y F, Zhang D F, Zhao X M, et al. Autoinducer-2-mediated quorum-sensing system resists T 4 phage infection in Escherichia coli. Journal of Basic Microbiology, 2021, 61(12): 1113-1123.
doi: 10.1002/jobm.v61.12
[7] Thomas S, Izard J, Walsh E, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Research, 2017, 77(8): 1783-1812.
doi: 10.1158/0008-5472.CAN-16-2929 pmid: 28292977
[8] Andersson D, Hughes D, Kubicek-Sutherland J. Mechanisms and consequences of bacterial resistance to antimicrobial peptides[J]. Drug Resistance Updates, 2016, 26(4): 43-57.
doi: 10.1016/j.drup.2016.04.002
[9] LaSarre B, Federle M J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews: MMBR, 2013, 77(1): 73-111.
doi: 10.1128/MMBR.00046-12
[10] Mull R W, Harrington A, Sanchez L A, et al. Cyclic peptides that govern signal transduction pathways: from prokaryotes to multi-cellular organisms. Current Topics in Medicinal Chemistry, 2018, 18(7): 625-644.
doi: 10.2174/1568026618666180518090705 pmid: 29773060
[11] Bikash C R, Hamry S R, Tal-Gan Y. Structure-activity relationships of the competence stimulating peptide in Streptococcus mutans reveal motifs critical for membrane protease SepM recognition and ComD receptor activation. ACS Infectious Diseases, 2018, 4(9): 1385-1394.
doi: 10.1021/acsinfecdis.8b00115
[12] Stephens K, Bentley W E. Synthetic biology for manipulating quorum sensing in microbial consortia. Trends in Microbiology, 2020, 28(8): 633-643.
doi: S0966-842X(20)30080-9 pmid: 32340782
[13] Cardoso P, Fazion F, Perchat S, et al. Rap-phr systems from plasmids pAW63 and pHT8-1 act together to regulate sporulation in the Bacillus thuringiensis serovar kurstaki HD73 strain. Applied and Environmental Microbiology, 2020, 86(18): e01238-e01220.
[14] Dubois T, Faegri K, Gélis-Jeanvoine S, et al. Correction: necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathogens, 2016, 12(11): e1006049.
doi: 10.1371/journal.ppat.1006049
[15] Pundir P, Liu R, Vasavda C, et al. A connective tissue mast-cell-specific receptor detects bacterial quorum-sensing molecules and mediates antibacterial immunity. Cell Host & Microbe, 2019, 26(1): 114-122.e8.
[16] Tal-Gan Y, Ivancic M, Cornilescu G, et al. Highly stable, amide-bridged autoinducing peptide analogues that strongly inhibit the AgrC quorum sensing receptor in Staphylococcus aureus. Angewandte Chemie (International Ed in English), 2016, 55(31): 8913-8917.
doi: 10.1002/anie.201602974
[17] Špacapan M, Danevčič T, Štefanic P, et al. The ComX quorum sensing peptide of Bacillus subtilis affects biofilm formation negatively and sporulation positively. Microorganisms, 2020, 8(8): 1131.
doi: 10.3390/microorganisms8081131
[18] Kareb O, Aïder M. Quorum sensing circuits in the communicating mechanisms of bacteria and its implication in the biosynthesis of bacteriocins by lactic acid bacteria: a review. Probiotics and Antimicrobial Proteins, 2020, 12(1): 5-17.
doi: 10.1007/s12602-019-09555-4 pmid: 31104210
[19] Pomerantsev A P, Pomerantseva O M, Camp A S, et al. PapR peptide maturation: role of the NprB protease in Bacillus cereus 569 PlcR/PapR global gene regulation. FEMS Immunology & Medical Microbiology, 2009, 55(3): 361-377.
[20] Mootz J M, Benson M A, Heim C E, et al. Rot is a key regulator of Staphylococcus aureus biofilm formation. Molecular Microbiology, 2015, 96(2): 388-404.
doi: 10.1111/mmi.12943 pmid: 25612137
[21] Apriyanti E, Satari M H, Kurnia D. Potential of MurA enzyme and GBAP in fsr quorum sensing system as antibacterial drugs target: in vitro and in silico study of antibacterial compounds from Myrmecodia pendans. Combinatorial Chemistry & High Throughput Screening, 2021, 24(1): 109-118.
[22] Polkade A V, Mantri S S, Patwekar U J, et al. Quorum sensing: an under-explored phenomenon in the Phylum Actinobacteria. Frontiers in Microbiology, 2016, 7: 131.
doi: 10.3389/fmicb.2016.00131 pmid: 26904007
[23] Morris K A, Macfarlane-Smith L R, Wilcox M H. Evaluation of the novel artus c. difficile qs-rgq, vanr qs-rgq and mrsa/sa qs-rgq assays for the laboratory diagnosis of Clostridium difficile infection (cdi), and for vancomycin-resistant enterococci (vre) and methicillin-resistant Staphylococcus aureus (mrsa) screening. European Journal of Clinical Microbiology & Infectious Diseases, 2017, 36(5): 823-829.
[24] Piewngam P, Chiou J, Chatterjee P, et al. Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Review of Anti-Infective Therapy, 2020, 18(6): 499-510.
doi: 10.1080/14787210.2020.1750951
[25] Drewnowska J M, Stefanska N, Czerniecka M, et al. Potential enterotoxicity of phylogenetically diverse Bacillus cereus sensu lato soil isolates from different geographical locations. Applied and Environmental Microbiology, 2020, 86(11): e03032-e03019.
[26] Yehuda A, Slamti L, Malach E, et al. Elucidating the hot spot residues of quorum sensing peptidic autoinducer PapR by multiple amino acid replacements. Frontiers in Microbiology, 2019, 10: 1246.
doi: 10.3389/fmicb.2019.01246 pmid: 31231335
[27] de F Cardoso P, Perchat S, Vilas-Boas L A, et al. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group. Current Genetics, 2019, 65(6): 1367-1381.
doi: 10.1007/s00294-019-00993-9
[28] Jahns A C, Eilers H, Alexeyev O A. Transcriptomic analysis of Propionibacterium acnes biofilms in vitro. Anaerobe, 2016, 42: 111-118.
doi: 10.1016/j.anaerobe.2016.10.001
[29] Frenzel E, Doll V, Pauthner M, et al. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Molecular Microbiology, 2012, 85(1): 67-88.
doi: 10.1111/j.1365-2958.2012.08090.x pmid: 22571587
[30] 郑贝贝. 耐冷菌Bacillus cereus MYB41-22群体感应系统与其温度适应性相关功能研究. 昆明: 昆明理工大学, 2018.
Zheng B B. Mechanism of QS system involved in temperature adaptation in Bacillus cereus MYB41-22. Kunming: Kunming University of Science and Technology, 2018.
[31] Diaz A R, Core L J, Jiang M, et al. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. Journal of Bacteriology, 2012, 194(6): 1378-1388.
doi: 10.1128/JB.06747-11
[32] Dogsa I, Choudhary K S, Marsetic Z, et al. ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: a census in prokaryotic genomes. PLoS One, 2014, 9(5): e96122.
doi: 10.1371/journal.pone.0096122
[33] Spacapan M, Danevčič T, Mandic-Mulec I. ComX-induced exoproteases degrade ComX in Bacillus subtilis PS-216. Frontiers in Microbiology, 2018, 9: 105.
doi: 10.3389/fmicb.2018.00105 pmid: 29449835
[34] Pottathil M, Jung A, Lazazzera B A. CSF, a species-specific extracellular signaling peptide for communication among strains of Bacillus subtilis and Bacillus mojavensis. Journal of Bacteriology, 2008, 190(11): 4095-4099.
doi: 10.1128/JB.00187-08 pmid: 18375560
[35] Koch G, Yepes A, Förstner K U, et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell, 2014, 158(5): 1060-1071.
doi: 10.1016/j.cell.2014.06.046
[36] Lubkowicz D, Ho C L, Hwang I Y, et al. Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synthetic Biology, 2018, 7(5): 1229-1237.
doi: 10.1021/acssynbio.8b00063 pmid: 29652493
[37] Wang B Y, Zhao A S, Novick R P, et al. Key driving forces in the biosynthesis of autoinducing peptides required for staphylococcal virulence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34): 10679-10684.
[38] Kirchdoerfer R N, Garner A L, Flack C E, et al. Structural basis for ligand recognition and discrimination of a quorum-quenching antibody. Journal of Biological Chemistry, 2011, 286(19): 17351-17358.
doi: 10.1074/jbc.M111.231258 pmid: 21454495
[39] 刘俐嫔, 王晓川. 肺炎链球菌感染的免疫应答. 中华全科医学, 2018, 16(9): 1540-1544.
Liu L P, Wang X C. Immune response to Streptococcus pneumonia infection. Chinese Journal of General Practice, 2018, 16(9): 1540-1544.
[40] Moreno-Gámez S, Sorg R A, Domenech A, et al. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nature Communications, 2017, 8: 854.
doi: 10.1038/s41467-017-00903-y pmid: 29021534
[41] Hoover S E, Perez A J, Tsui H C T, et al. A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D 39 that regulates a lantibiotic biosynthesis gene cluster. Molecular Microbiology, 2015, 97(2): 229-243.
doi: 10.1111/mmi.2015.97.issue-2
[42] 王满满, 吴胜波, 吴昊, 等. 多酚干扰细菌群体感应研究进展. 中国生物工程杂志, 2022, 42(9): 93-104.
Wang M M, Wu S B, Wu H, et al. Research progress on polyphenol-based quorum sensing interfering. China Biotechnology, 2022, 42(9): 93-104.
[1] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[2] 程子昭,陈楚楚,应磊,李校堃,黄志锋. 冠状病毒基因组特征及感染特点比较*[J]. 中国生物工程杂志, 2020, 40(11): 56-66.
[3] 田开仁,薛二淑,宋倩倩,乔建军,李艳妮. CRISPR-dCas9调控基因转录的研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 94-101.
[4] 吴小芳,刘家亨,熊慧,乔建军,朱宏吉. 革兰氏阳性菌脂蛋白的研究进展 *[J]. 中国生物工程杂志, 2018, 38(6): 86-94.
[5] 邱浩,汪铭书,程安春. γPNA一种新型高效的肽核酸[J]. 中国生物工程杂志, 2018, 38(2): 75-81.
[6] 张健, 吴昊, 李艳妮, 乔建军. 革兰氏阳性菌非编码小RNA的研究进展[J]. 中国生物工程杂志, 2016, 36(10): 106-114.
[7] 王佳稳, 冯婧娴, 林俊生, 刁勇. 技术与方法适体核酶型人工核糖开关的设计[J]. 中国生物工程杂志, 2014, 34(2): 59-64.
[8] 赵晶, 权春善. 微生物信号分子降解酶研究进展[J]. 中国生物工程杂志, 2012, 32(12): 110-116.
[9] 董园园, 李海燕, 李校堃, 杨树林. microRNA分子表达与调控研究的最新进展[J]. 中国生物工程杂志, 2011, 31(12): 109-114.
[10] 朱先灿 宋凤斌. 植物菌根共生磷酸盐转运蛋白[J]. 中国生物工程杂志, 2009, 29(12): 108-113.
[11] 王建华,权春善,李新. 细菌群体感应的信号转导机制及其对抗生素生产的影响[J]. 中国生物工程杂志, 2008, 28(4): 87-92.
[12] 陈坚,薛绪潮,方国恩,苏长青,钱其军. RU486诱导调控载体的构建及体外表达[J]. 中国生物工程杂志, 2007, 27(6): 1-5.
[13] 张勇, 王瑶, 陈士云. 群体感应信号分子AI-2研究进展[J]. 中国生物工程杂志, 2005, 25(9): 14-18.
[14] 贾彩凤, 李悦, 瞿超. 木本植物体细胞胚胎发生技术[J]. 中国生物工程杂志, 2004, 24(3): 26-29.
[15] 高波, 宋红芹, 陈芹, 李碧春, 孙怀昌, 王克华, 窦套存, 丁铲. 鸡输卵管特异表达载体的构建及其体内表达[J]. 中国生物工程杂志, 2003, 23(8): 83-86.