Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 152-164    DOI: 10.13523/j.cb.2209025
综述     
微生物解聚木质素合成聚羟基脂肪酸脂的研究进展*
尚华蓉,孙建中,朱道辰**()
江苏大学生物质能源研究院 环境与安全工程学院 镇江 212013
Research Progress of Microbial Depolymerization of Lignin to Synthesize Polyhydroxyalkanoates
SHANG Hua-rong,SUN Jian-zhong,ZHU Dao-chen**()
Jiangsu University,School of Environment and Safety Engineering, Zhenjiang 212013, China
 全文: PDF(2165 KB)   HTML
摘要:

聚羟基脂肪酸脂(PHAs)作为一种具高生物降解性和易加工性的细胞内储能物质,有希望代替石油基塑料,在全球生物塑料市场受到越来越多的关注。木质素作为地球上最为丰富的天然可再生芳香聚合物,可作为底物通过微生物降解转化为苯酚等单环芳香化合物,然后芳香化合物进一步转化,最终合成PHAs。综述了木质素降解转化合成PHAs的微生物及其相关途径,阐述了目前存在的问题和困难。深入探讨了提高木质素降解转化合成PHAs的生产效率及产物性能的研究进展。同时提出了木质素转化合成PHAs面临的挑战以及对未来发展的展望。

关键词: 木质素聚羟基脂肪酸脂(PHAs)发酵基因工程代谢调控生物转化    
Abstract:

Polyhydroxyalkanoates(PHAs)as a kind of intracellular energy storage material with high biodegradability and easy processing, are expected to replace petroleum based plastics and have attracted more and more attention in the global bioplastics market. Lignin, as the most abundant natural renewable aromatic polymer on the earth, can be used as a substrate to be converted into monocyclic aromatic compounds such as phenol through microbial degradation, and then synthesize degradable plastic PHAs. In this paper, the microorganisms and related pathways of lignin degradation and transformation to synthesize PHAs are reviewed, and the existing problems and difficulties are described. The research progress on improving the survival efficiency and product performance of PHAs synthesized by lignin degradation and transformation was deeply discussed. At the same time, the challenges faced by the synthesis of PHAs by lignin transformation and the prospects for the future development were put forward.

Key words: Lignin    Polyhydroxyalkanoates    Fermentation    Genetic engineering    Metabolic regulation    Biotransformation
收稿日期: 2022-09-12 出版日期: 2023-03-31
ZTFLH:  Q819  
基金资助: *江苏省碳达峰碳中和科技创新专项(BK20220003)
通讯作者: **朱道辰     E-mail: dczhucn@ujs.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
尚华蓉
孙建中
朱道辰

引用本文:

尚华蓉, 孙建中, 朱道辰. 微生物解聚木质素合成聚羟基脂肪酸脂的研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 152-164.

SHANG Hua-rong, SUN Jian-zhong, ZHU Dao-chen. Research Progress of Microbial Depolymerization of Lignin to Synthesize Polyhydroxyalkanoates. China Biotechnology, 2023, 43(2/3): 152-164.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209025        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/152

图1  木质素结构图[12]
木质素种类 菌株 培养条件 时间/h PHAs/(g/L) 参考文献
硫酸盐木质素 P. putida A514 摇瓶发酵 48 0.026 [10]
不溶性硫酸盐木质素 P. putida A514(recombinant) 摇瓶发酵 48 0.16 [10]
含残留糖和木质素的组合碳源 P. putida KT2440 生物炼制 18 1.5 [14]
经前处理的木质素流 P. putida KT2440 摇瓶发酵 18 0.48 [15]
经前处理的木质素流 P. putida KT2440 分批发酵 18 1.0 [15]
乙醇、木质素混合碳源(EDL) P. putida KT2440 摇瓶发酵 96 0.330 [16]
硫酸盐木质素 P. putida NX-1 分批发酵 140 0.114 [17]
富含木质素的纸浆水黑液 Pseudomonas monteilii 分批发酵 120 0.238 [18]
碱木质素 Pseudomonas sp. Q18 摇瓶发酵 - - [19]
木质素 (1 g/L) Oceanimonas doudoroffii JCM21046T 摇瓶发酵 48 0.52 [20]
木质素 (1 g/L) Listonella pelagia 摇瓶发酵 48 - [20]
木质素种类 菌株 培养条件 时间/h PHAs/(g/L) 参考文献
硫酸盐木质素 Cupriavidus basilensis B-8 补料分批发酵 48 0.3194 [21]
NaOH 处理的水稻秸梗(2.88% 木质素) Cupriavidus basilensis B-8 摇瓶发酵 - 0.032 [22]
硫酸盐木质素 Pandoraea sp.ISTKB 摇瓶发酵 96 0.018 [23]
木质素磺酸盐 Burkholderia strain ISTR5 摇瓶发酵 96 0.0115 [24]
硫酸盐木质素 Burkholderia strain ISTR5 摇瓶发酵 96 0.023 [24]
硫酸盐木质素 Pandoraea sp.B-6 摇瓶发酵 7 d 0.1664 [25]
表1  微生物利用木质素产PHAs
图2  木质素解聚成丙酮酸、乙酰辅酶A、琥珀酰辅酶A中间体
图3  中间体合成PHAs
编号 缩写 名称
01 LDH 乳酸脱氢酶
02 PCT 丙酰辅酶A转移酶
03 phaC 聚羟基脂肪酸脂合成酶
04 accA 乙酰辅酶A羧化酶羧化转移酶
05 FabB β-酮酰基合酶
06 FabG 3-氧代酰基-ACP还原酶
07 FabZ 3-羟基酰基脱水酶
08 YgfG 甲基丙二酰辅酶A脱羧酶
09 BktB 酮脂酰硫解酶
10 FabF β-酮脂酰-ACP 合成酶
11 phaG 3-羟基酰基-酰基载体蛋白辅酶
12 Alkk 酰基辅酶A合成酶
13 phaA β-酮硫酶
14 phaB 乙酰乙酰脱氢酶
15 IIvA 苏氨酸脱氢酶
16 SucA/SucD 琥珀酸脱氢酶
17 4HbD 4-羟基丁酸脱氢酶
18 Cat1/Cat2 4-羟基丁酸-CoA转移酶
19 FadE 酰基辅酶A脱氢酶
20 fadB 烯酰辅酶A水合酶
21 ldhA D-乳酸脱氢酶
22 dsdA 丝氨酸脱水酶
23 fadD 酰基辅酶A连接酶
24 phaR 聚羟基烷酸合成阻滞剂
25 phbR PHA合成抑制因子
26 PhaJ 烯酰辅酶A水合酶
27 PhaZ PHAs解聚酶
28 PhaP 颗粒结合蛋白
29 PhaR 调控蛋白
30 PhaI 调控蛋白
31 PhaF 调控蛋白
表2  PHAs合成相关酶
[1] Gumel A M, Annuar M M, Chisti Y. Recent advances in the production, recovery and applications of polyhydroxyalkanoates. Journal of Polymers and the Environment, 2013, 21(2): 580-605.
doi: 10.1007/s10924-012-0527-1
[2] Meng D C, Shen R, Yao H, et al. Engineering the diversity of polyesters. Current Opinion in Biotechnology, 2014, 29: 24-33.
doi: 10.1016/j.copbio.2014.02.013 pmid: 24632193
[3] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 2000, 25(10): 1503-1555.
doi: 10.1016/S0079-6700(00)00035-6
[4] Bugnicourt E, Cinelli P, Lazzeri A, et al. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 2014, 8(11): 791-808.
doi: 10.3144/expresspolymlett.2014.82
[5] Gao Z W, Lang X L, Chen S, et al. Mini-review on the synthesis of lignin-based phenolic resin. Energy & Fuels, 2021, 35(22): 18385-18395.
doi: 10.1021/acs.energyfuels.1c03177
[6] Jin Z F, Matsumoto Y, Tange T, et al. Structural characteristics of lignin in primitive pteridophytes: Selaginella species. Journal of Wood Science, 2007, 53(5): 412-418.
doi: 10.1007/s10086-006-0872-6
[7] Chen P, Yan L, Zhang S, et al. Optimizing bioconversion of ferulic acid to vanillin by Bacillus subtilis in the stirred packed reactor using Box-Behnken design and desirability function. Food Science and Biotechnology, 2017, 26(1): 143-152.
doi: 10.1007/s10068-017-0019-0
[8] Toledano A, Serrano L, Garcia A, et al. Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chemical Engineering Journal, 2010, 157(1): 93-99.
doi: 10.1016/j.cej.2009.10.056
[9] Lin L, Cheng Y B, Pu Y Q, et al. Systems biology-guided biodesign of consolidated lignin conversion. Green Chemistry, 2016, 18(20): 5536-5547.
doi: 10.1039/C6GC01131D
[10] Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: improving lignin processing in the biorefinery. Science, 2014, 344(6185): 1246843.
doi: 10.1126/science.1246843
[11] Corona A, Biddy M J, Vardon D R, et al. Life cycle assessment of adipic acid production from lignin. Green Chemistry, 2018, 20(16): 3857-3866.
doi: 10.1039/C8GC00868J
[12] Li X H, Wang S X, Duan L, et al. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environmental Science & Technology, 2007, 41(17): 6052-6058.
doi: 10.1021/es0705137
[13] Xu Z X, Lei P, Zhai R, et al. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnology for Biofuels, 2019, 12(1): 32.
doi: 10.1186/s13068-019-1376-0
[14] Liu Z H, Shinde S, Xie S X, et al. Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries. Sustainable Energy & Fuels, 2019, 3(8): 2024-2037.
[15] Liu Z H, Olson M L, Shinde S, et al. Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 2017, 19(20): 4939-4955.
doi: 10.1039/C7GC02057K
[16] Nguyen L T, Tran M H, Lee E Y. Co-upgrading of ethanol-assisted depolymerized lignin: a new biological lignin valorization approach for the production of protocatechuic acid and polyhydroxyalkanoic acid. Bioresource Technology, 2021, 338: 125563.
doi: 10.1016/j.biortech.2021.125563
[17] Xu Z X, Xu M L, Cai C G, et al. Microbial polyhydroxyalkanoate production from lignin by Pseudomonas putida NX-1. Bioresource Technology, 2021, 319: 124210.
doi: 10.1016/j.biortech.2020.124210
[18] Unrean P, Napathorn S C, Tee K L, et al. Lignin to polyhydroxyalkanoate bioprocessing by novel strain of Pseudomonas monteilii. Biomass Conversion and Biorefinery, 2021. DOI: s13399-021-01525-7.
doi: s13399-021-01525-7
[19] Yang C X, Yue F F, Cui Y L, et al. Biodegradation of lignin by Pseudomonas sp. Q18 and the characterization of a novel bacterial DyP-type peroxidase. Journal of Industrial Microbiology & Biotechnology, 2018, 45(10): 913-927.
[20] Numata K, Morisaki K. Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 569-573.
[21] Shi Y, Yan X, Li Q, et al. Directed bioconversion of kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochemistry, 2017, 52: 238-242.
doi: 10.1016/j.procbio.2016.10.004
[22] Si M Y, Yan X, Liu M R, et al. In situ lignin bioconversion promotes complete carbohydrate conversion of rice straw by Cupriavidus basilensis B-8. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7969-7978.
[23] Kumar M, Singhal A, Verma P K, et al. Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. ACS Omega, 2017, 2(12): 9156-9163.
doi: 10.1021/acsomega.7b01615
[24] Morya R, Sharma A, Kumar M, et al. Polyhydroxyalkanoate synthesis and characterization: a proteogenomic and process optimization study for biovalorization of industrial lignin. Bioresource Technology, 2021, 320: 124439.
doi: 10.1016/j.biortech.2020.124439
[25] Liu D, Yan X, Si M Y, et al. Bioconversion of lignin into bioplastics by Pandoraea sp. B-6: molecular mechanism. Environmental Science and Pollution Research, 2019, 26(3): 2761-2770.
doi: 10.1007/s11356-018-3785-1
[26] Poblete-Castro I, Rodriguez A L, Lam C M C, et al. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. Journal of Microbiology and Biotechnology, 2014, 24(1): 59-69.
pmid: 24150495
[27] Loeschcke A, Thies S. Pseudomonas putida—a versatile host for the production of natural products. Applied Microbiology and Biotechnology, 2015, 99: 6197-6214.
doi: 10.1007/s00253-015-6745-4 pmid: 26099332
[28] Tobin K M, O’Connor K E. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiology Letters, 2005, 253(1): 111-118.
doi: 10.1016/j.femsle.2005.09.025
[29] Liu Z H, Shinde S, Xie S X, et al. Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries. Sustainable Energy & Fuels, 2019, 3(8): 2024-2037.
[30] Mohanakrishnan A S, Easwaran S N, Ravi D P, et al. Understanding the biocalorimetric and respirometric behaviour of co-culture (R. eutropha, P. putida and A. vinelandii) in poly (3-hydroxybutyrate) batch production. Biochemical Engineering Journal, 2020, 155: 107334.
doi: 10.1016/j.bej.2019.107334
[31] Li M Y, Chen X B, Che X M, et al. Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metabolic Engineering, 2019, 52: 253-262.
doi: 10.1016/j.ymben.2018.12.007
[32] Sandoval A, Arias-Barrau E, Arcos M, et al. Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environmental Microbiology, 2007, 9(3): 737-751.
pmid: 17298373
[33] Kumar M, Singhal A, Verma P K, et al. Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. ACS Omega, 2017, 2(12): 9156-9163.
doi: 10.1021/acsomega.7b01615
[34] Rahmanpour R, Bugg T D H. Characterisation of dyp-type peroxidases from Pseudomonas fluorescens pf-5: oxidation of Mn(II) and polymeric lignin by Dyp1B. Archives of Biochemistry and Biophysics, 2015, 574: 93-98.
doi: 10.1016/j.abb.2014.12.022 pmid: 25558792
[35] Chen Z, Wan C X. Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 73: 610-621.
doi: 10.1016/j.rser.2017.01.166
[36] Bugg T D H, Ahmad M, Hardiman E M, et al. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 2011, 28(12): 1883-1896.
doi: 10.1039/c1np00042j pmid: 21918777
[37] Castro L M, Foong C P, Higuchi-Takeuchi M, et al. Microbial prospection of an Amazonian blackwater lake and whole-genome sequencing of bacteria capable of polyhydroxyalkanoate synthesis. Polymer Journal, 2021, 53(1): 191-202.
doi: 10.1038/s41428-020-00424-4
[38] Valentin H E, Dennis D. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. Journal of Biotechnology, 1997, 58(1): 33-38.
pmid: 9335177
[39] Turco R, Santagata G, Corrado I, et al. In vivo and post-synthesis strategies to enhance the properties of PHB-based materials: a review. Frontiers in Bioengineering and Biotechnology, 2021, 8: 619266.
doi: 10.3389/fbioe.2020.619266
[40] Zheng L Z, Li Z, Tian H L, et al. Molecular cloning and functional analysis of (R)-3-hydroxyacyl-acyl carrier protein: coenzyme A transacylase from Pseudomonas mendocina LZ. FEMS Microbiology Letters, 2005, 252(2): 299-307.
doi: 10.1016/j.femsle.2005.09.006
[41] Taguchi K, Aoyagi Y, Matsusaki H, et al. Over-expression of 3-ketoacyl-ACP synthase III or malonyl-CoA-ACP transacylase gene induces monomer supply for polyhydroxybutyrate production in Escherichia coli HB101. Biotechnology Letters, 1999, 21(7): 579-584.
doi: 10.1023/A:1005572526080
[42] Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds:from one strategy to four. Nature Reviews Microbiology, 2011, 9(11): 803-816.
doi: 10.1038/nrmicro2652
[43] Wang Y, Yin J, Chen G Q. Polyhydroxyalkanoates, challenges and opportunities. Current Opinion in Biotechnology, 2014, 30: 59-65.
doi: 10.1016/j.copbio.2014.06.001 pmid: 24976377
[44] Nikodinovic-Runic J, Flanagan M, Hume A R, et al. Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions. Microbiology (Reading, England), 2009, 155(Pt 10): 3348-3361.
doi: 10.1099/mic.0.031153-0
[45] Xu Z Y, Li X L, Hao N J, et al. Kinetic understanding of nitrogen supply condition on biosynthesis of polyhydroxyalkanoate from benzoate by Pseudomonas putida KT2440. Bioresource Technology, 2019, 273: 538-544.
doi: 10.1016/j.biortech.2018.11.046
[46] Annamalai N, Sivakumar N. Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation. Journal of Biotechnology, 2016, 237: 13-17.
doi: 10.1016/j.jbiotec.2016.09.001
[47] Follonier S, Henes B, Panke S, et al. Putting cells under pressure: a simple and efficient way to enhance the productivity of medium-chain-length polyhydroxyalkanoate in processes with Pseudomonas putida KT2440. Biotechnology and Bioengineering, 2012, 109(2): 451-461.
doi: 10.1002/bit.23312
[48] Ramírez-Morales J E, Czichowski P, Besirlioglu V, et al. Lignin aromatics to PHA polymers: nitrogen and oxygen are the key factors for Pseudomonas. ACS Sustainable Chemistry & Engineering, 2021, 9(31): 10579-10590.
[49] Steinbüchel A, Hustede E, Liebergesell M, et al. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiology Letters, 1992, 103(2-4): 217-230.
doi: 10.1111/fml.1992.103.issue-2-4
[50] Nelson K E, Weinel C, Paulsen I T, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology, 2002, 4(12): 799-808.
doi: 10.1046/j.1462-2920.2002.00366.x pmid: 12534463
[51] Belda E, van Heck R G A, José Lopez-Sanchez M, et al. The revisited genome of Pseudomonas putida KT 2440 enlightens its value as a robust metabolic chassis. Environmental Microbiology, 2016, 18(10): 3403-3424.
doi: 10.1111/1462-2920.13230
[52] Ouyang S P, Luo R C, Chen S S, et al. Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules, 2007, 8(8): 2504-2511.
doi: 10.1021/bm0702307
[53] Salvachúa D, Rydzak T, Auwae R, et al. Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin. Microbial Biotechnology, 2020, 13(1): 290-298.
doi: 10.1111/1751-7915.13481 pmid: 31468725
[54] Wang X, Lin L, Dong J, et al. Simultaneous improvements of pseudomonas cell growth and polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing. Applied and Environmental Microbiology, 2018, 84(18): e01469-18.
[55] 高庆龙, 陈升宝, 田文佳, 等. 代谢工程法强化恶臭假单胞菌利用木质素积累PHA的能力. 生物技术通报, 2018, 34(10): 92-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0244
Gao Q L, Chen S B, Tian W J, et al. Strengthening the ability of Pseudomonas putida to accumulate PHA from lignin by metabolic engineering. Biotechnology Bulletin, 2018, 34(10): 92-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0244
[56] Lotti N, Pizzoli M, Ceccorulli G, et al. Binary blends of microbial poly(3-hydroxybutyrate) with polymethacrylates. Polymer, 1993, 34(23): 4935-4940.
doi: 10.1016/0032-3861(93)90022-3
[57] Chen J Y, Zhang L, Chen J C, et al. Biosynthesis and characterization of polyhydroxyalkanoate copolyesters in Ralstonia eutropha PHB-4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. Chinese Journal of Chemical Engineering, 2007, 15(3): 391-396.
doi: 10.1016/S1004-9541(07)60097-4
[58] Kodumal S J, Patel K G, Reid R, et al. Total synthesis of long DNA sequences:synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15573-15578.
[59] Liu Y, Wu Y Y, Zhang Y, et al. Lignin degradation potential and draft genome sequence of Trametes trogii S0301. Biotechnology for Biofuels, 2019, 12(1): 256.
doi: 10.1186/s13068-019-1596-3
[60] Tan I K P, Foong C P, Tan H T, et al. Polyhydroxyalkanoate (PHA) synthase genes and PHA-associated gene clusters in Pseudomonas spp. and Janthinobacterium spp. isolated from Antarctica. Journal of Biotechnology, 2020, 313: 18-28.
doi: 10.1016/j.jbiotec.2020.03.006
[61] Kumar M, Verma S, Gazara R K, et al. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. Biotechnology for Biofuels, 2018, 11: 154.
doi: 10.1186/s13068-018-1148-2
[62] Wang J Q, Suzuki T, Mori T, et al. Transcriptomics analysis reveals the high biodegradation efficiency of white-rot fungus Phanerochaete sordida YK-624 on native lignin. Journal of Bioscience and Bioengineering, 2021, 132(3): 253-257.
doi: 10.1016/j.jbiosc.2021.05.009
[63] Araki T, Umeda S, Kamimura N, et al. Regulation of vanillate and syringate catabolism by a MarR-type transcriptional regulator DesR in Sphingobium sp. SYK-6. Scientific Reports, 2019, 9: 18036.
doi: 10.1038/s41598-019-54490-7
[64] Wang J X, Chen L, Huang S Q, et al. RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 2012, 5(1): 89.
doi: 10.1186/1754-6834-5-89
[65] 张亚茹, 任静, 张伟涛, 等. 解淀粉芽胞杆菌MN-13的分离、鉴定及木质素降解特性. 农业生物技术学报, 2021, 29(7): 1389-1399.
Zhang Y R, Ren J, Zhang W T, et al. Screening, identification and lignin-degradation characteristics of Bacillus amyloliquefaciens MN-13. Journal of Agricultural Biotechnology, 2021, 29(7): 1389-1399.
[66] Zhang Y T, Liu H L, Liu Y J, et al. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. International Journal of Biological Macromolecules, 2021, 191: 608-617.
doi: 10.1016/j.ijbiomac.2021.09.142
[67] Zhu D C, Xu L X, Sethupathy S, et al. Decoding lignin valorization pathways in the extremophilic Bacillus ligniniphilus L 1 for vanillin biosynthesis. Green Chemistry, 2021, 23(23): 9554-9570.
doi: 10.1039/D1GC02692E
[68] Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metabolic Engineering, 2007, 9(3): 258-267.
doi: 10.1016/j.ymben.2006.12.002 pmid: 17292651
[69] Choi J E, Na H Y, Yang T H, et al. A lipophilic fluorescent LipidGreen1-based quantification method for high-throughput screening analysis of intracellular poly-3-hydroxybutyrate. AMB Express, 2015, 5(1): 48.
doi: 10.1186/s13568-015-0131-6
[70] Averesch N J H, Krömer J O. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Frontiers in Bioengineering and Biotechnology, 2018, 6: 32.
doi: 10.3389/fbioe.2018.00032 pmid: 29632862
[71] Nduko J M, Suzuki W, Matsumoto K, et al. Polyhydroxyalkanoates production from cellulose hydrolysate in Escherichia coli LS 5218 with superior resistance to 5-hydroxymethylfurfural. Journal of Bioscience and Bioengineering, 2012, 113(1): 70-72.
doi: 10.1016/j.jbiosc.2011.08.021
[72] Rodríguez Gamero J E, Favaro L, Pizzocchero V, et al. Nuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processing. Bioresource Technology, 2018, 261: 176-181.
doi: S0960-8524(18)30534-0 pmid: 29660658
[73] Zhang Z H, Wang Y, Zheng P, et al. Promoting lignin valorization by coping with toxic C1 byproducts. Trends in Biotechnology, 2021, 39(4): 331-335.
doi: 10.1016/j.tibtech.2020.09.005 pmid: 33008644
[74] Kohlstedt M, Weimer A, Weiland F, et al. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Metabolic Engineering, 2022, 72: 337-352.
doi: 10.1016/j.ymben.2022.05.001 pmid: 35545205
[1] 曹春蕾,余培斌,吴殿辉,蔡国林. 几株啤酒酵母的筛选及发酵性能比较*[J]. 中国生物工程杂志, 2022, 42(7): 45-53.
[2] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[3] 靳佳琦,闻建平. 合成生物学指导下芽孢杆菌合成环脂肽的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 86-101.
[4] 庞光武,梁智群. 海洋枯草芽孢杆菌产纤溶酶的诱变育种与发酵工艺优化*[J]. 中国生物工程杂志, 2022, 42(12): 27-36.
[5] 李夏桐, 杨林, 韩盼, 孙卫宁, 周凯乐, 程刚. 生物强化污泥厌氧发酵产酸研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 155-162.
[6] 吴静, 王珍珍, 王晓宇, 罗丹, 蒋增良, 沙如意, 毛建卫, 崔艳丽. 酿酒酵母发酵与自然发酵过程中霍山石斛酵素的代谢物及抗氧化变化*[J]. 中国生物工程杂志, 2022, 42(11): 73-87.
[7] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[8] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[9] 杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.
[10] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[11] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[12] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[13] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[14] 王宝石,谭凤玲,李林波,李志刚,孟丽,邱立友,张明霞. 生物处理策略改善麸皮酚类化合物的生物可及性*[J]. 中国生物工程杂志, 2020, 40(12): 88-94.
[15] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.