Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 120-129    DOI: 10.13523/j.cb.2208024
综述     
巨噬细胞移动抑制因子调控细胞衰老的研究进展*
李玉锦1,王杰1,王亚妮2,汪耀2,孟佳敏2,张红兵2,**()
1 西北大学生命科学学院 西安 710069
2 西北大学附属第一医院 西安市第一医院 陕西省眼科研究所 西安 710002
Research Progress of Macrophage Migration Inhibitory Factor Regulating Cell Senescence
LI Yu-jin1,WANG Jie1,WANG Ya-ni2,WANG Yao2,MENG Jia-min2,ZHANG Hong-bing2,**()
1 College of Life Science, Northwest University, Xi’an 710069, China
2 The First Affiliated Hospital of Northwest University, Xi’an First Hospital, Eye Institute of Shaanxi Province, Xi’an 710002, China
 全文: PDF(909 KB)   HTML
摘要:

巨噬细胞移动抑制因子(macrophage migration inhibitory factor,MIF)是一种可被多种细胞表达的多效性细胞因子,对细胞的多种生物学功能发挥调控作用,包括细胞的增殖、分化、存活和凋亡,近期研究发现MIF与细胞衰老相关。为了进一步认识衰老的机制,对MIF与细胞衰老相关的研究进展作了总结,重点分析了MIF调控细胞衰老的机制,MIF调控衰老相关基因表达的机制,尤其是在缺氧和氧化应激条件下MIF调控衰老的机制,并分析了在MIF功能多态性背景下其对衰老相关疾病的复杂调控机制,最后介绍了MIF及其受体的生物工程产品开发和应用,为进一步研究MIF调控细胞衰老的机制奠定基础。

关键词: 巨噬细胞移动抑制因子细胞衰老氧化应激    
Abstract:

Macrophage migration inhibitory factor (MIF) is a widely expressed pleiotropic cytokine that controls various biological functions of cells, including cell proliferation, differentiation, survival and apoptosis. Recent studies have found that MIF is closely associated with cell senescence, suggesting that MIF may regulate cell senescence. To further understand the mechanism of cell senescence, the role of MIF in cell senescence and its mechanism in recent studies was summarized in this article, which includes how MIF controls senescence related gene expression, especially in hypoxia and oxidative stress conditions. The complex regulatory mechanisms of aging related diseases in the context of MIF functional polymorphism were further analyzed. Finally, the development and application of bioengineering products of MIF and its receptors were introduced. It lays a foundation for further study on the mechanism of MIF regulating cell senescence.

Key words: Macrophage migration inhibitory factor (MIF)    Cell senescence    Oxidative stress
收稿日期: 2022-08-17 出版日期: 2023-03-31
ZTFLH:  Q819  
基金资助: *陕西省自然科学基础研究计划(2021JZ-60);陕西省自然科学基础研究计划面上项目(2021JM-593)
通讯作者: **张红兵     E-mail: zhanghongbing01@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李玉锦
王杰
王亚妮
汪耀
孟佳敏
张红兵

引用本文:

李玉锦, 王杰, 王亚妮, 汪耀, 孟佳敏, 张红兵. 巨噬细胞移动抑制因子调控细胞衰老的研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 120-129.

LI Yu-jin, WANG Jie, WANG Ya-ni, WANG Yao, MENG Jia-min, ZHANG Hong-bing. Research Progress of Macrophage Migration Inhibitory Factor Regulating Cell Senescence. China Biotechnology, 2023, 43(2/3): 120-129.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2208024        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/120

图1  MIF调控细胞周期的机制
图2  MIF调控细胞衰老的机制
[1] Jankauskas S S, Wong D W L, Bucala R, et al. Evolving complexity of MIF signaling. Cellular Signalling, 2019, 57: 76-88.
doi: S0898-6568(19)30015-4 pmid: 30682543
[2] Harris J, VanPatten S, Deen N S, et al. Rediscovering MIF: new tricks for an old cytokine. Trends in Immunology, 2019, 40(5): 447-462.
doi: S1471-4906(19)30043-2 pmid: 30962001
[3] Wirtz T H, Saal A, Bergmann I, et al. Macrophage migration inhibitory factor exerts pro-proliferative and anti-apoptotic effects via CD 74 in murine hepatocellular carcinoma. British Journal of Pharmacology, 2021, 178(22): 4452-4467.
doi: 10.1111/bph.v178.22
[4] Sikora E, Bielak-Żmijewska A, Mosieniak G. What is and what is not cell senescence. Postepy Biochemii, 2018, 64(2): 110-118.
doi: 10.18388/pb.2018_120 pmid: 30656893
[5] Antelo-Iglesias L, Picallos-Rabina P, Estévez-Souto V, et al. The role of cellular senescence in tissue repair and regeneration. Mechanisms of Ageing and Development, 2021, 198: 111528.
doi: 10.1016/j.mad.2021.111528
[6] von Kobbe C. Cellular senescence: a view throughout organismal life. Cellular and Molecular Life Sciences, 2018, 75(19): 3553-3567.
doi: 10.1007/s00018-018-2879-8 pmid: 30030594
[7] Zhang Y L, Zhu W W, He H W, et al. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging, 2019, 11(24): 12641-12660.
doi: 10.18632/aging.v11i24
[8] Xia W Z, Hou M. Macrophage migration inhibitory factor rescues mesenchymal stem cells from doxorubicin-induced senescence though the PI3K-Akt signaling pathway. International Journal of Molecular Medicine, 2018, 41(2): 1127-1137.
doi: 10.3892/ijmm.2017.3282 pmid: 29207187
[9] Hu Y W, Xia W Z, Hou M. Macrophage migration inhibitory factor serves a pivotal role in the regulation of radiation-induced cardiac senescencethrough rebalancing the microRNA-34a/sirtuin 1 signaling pathway. International Journal of Molecular Medicine, 2018, 42(5): 2849-2858.
[10] Lan H Y. Role of macrophage migration inhibition factor in kidney disease. Nephron Experimental Nephrology, 2008, 109(3): e79-e83.
doi: 10.1159/000145463
[11] Deo R C. Machine learning in medicine. Circulation, 2015, 132(20): 1920-1930.
doi: 10.1161/CIRCULATIONAHA.115.001593 pmid: 26572668
[12] Chen C A, Chang J M, Yang Y L, et al. Macrophage migration inhibitory factor regulates integrin-β1 and cyclin D 1 expression via ERK pathway in podocytes. Biomedicine & Pharmacotherapy, 2020, 124: 109892.
doi: 10.1016/j.biopha.2020.109892
[13] Su H T, Na N, Zhang X D, et al. The biological function and significance of CD 74 in immune diseases. Inflammation Research, 2017, 66(3): 209-216.
doi: 10.1007/s00011-016-0995-1
[14] Kleemann R, Hausser A, Geiger G, et al. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature, 2000, 408(6809): 211-216.
doi: 10.1038/35041591
[15] Nguyen M T, Lue H Q, Kleemann R, et al. The cytokine macrophage migration inhibitory factor reduces pro-oxidative stress-induced apoptosis. The Journal of Immunology, 2003, 170(6): 3337-3347.
doi: 10.4049/jimmunol.170.6.3337
[16] Yoshihisa Y, Rehman M U, Kondo T, et al. Role of macrophage migration inhibitory factor in heat-induced apoptosis in keratinocytes. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2016, 30(11): 3870-3877.
doi: 10.1096/fsb2.v30.11
[17] Schröder B. The multifaceted roles of the invariant chain CD74:more than just a chaperone. Biochimica et Biophysica Acta, 2016, 1863(6 Pt A): 1269-1281.
doi: 10.1016/j.bbamcr.2016.03.026 pmid: 27033518
[18] Bruchez A, Sha K, Johnson J, et al. MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science, 2020, 370(6513): 241-247.
doi: 10.1126/science.abb3753 pmid: 32855215
[19] Lee S, Yu Y, Trimpert J, et al. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature, 2021, 599(7884): 283-289.
doi: 10.1038/s41586-021-03995-1
[20] Evangelou K, Veroutis D, Paschalaki K, et al. Pulmonary infection by SARS-CoV-2 induces senescence accompanied by an inflammatory phenotype in severe COVID-19: possible implications for viral mutagenesis. European Respiratory Journal, 2022, 60(2): 2102951.
doi: 10.1183/13993003.02951-2021
[21] Wei W Q, Ji S P. Cellular senescence: molecular mechanisms and pathogenicity. Journal of Cellular Physiology, 2018, 233(12): 9121-9135.
doi: 10.1002/jcp.26956 pmid: 30078211
[22] Childs B G, Durik M, Baker D J, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine, 2015, 21(12): 1424-1435.
doi: 10.1038/nm.4000 pmid: 26646499
[23] Liu R M, Liu G. Cell senescence and fibrotic lung diseases. Experimental Gerontology, 2020, 132: 110836.
doi: 10.1016/j.exger.2020.110836
[24] Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends in Cell Biology, 2018, 28(6): 436-453.
doi: S0962-8924(18)30020-5 pmid: 29477613
[25] Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Frontiers in Cell and Developmental Biology, 2021, 9: 645593.
doi: 10.3389/fcell.2021.645593
[26] Rajendran P, Alzahrani A M, Hanieh H N, et al. Autophagy and senescence: a new insight in selected human diseases. Journal of Cellular Physiology, 2019, 234(12): 21485-21492.
doi: 10.1002/jcp.28895 pmid: 31144309
[27] Wang Y Y, Hu Y Z, Wang H M, et al. Deficiency of MIF accentuates overloaded compression-induced nucleus pulposus cell oxidative damage via depressing mitophagy. Oxidative Medicine and Cellular Longevity, 2021, 2021: 6192498.
[28] Welford S M, Bedogni B, Gradin K, et al. HIF1α delays premature senescence through the activation of MIF. Genes & Development, 2006, 20(24): 3366-3371.
doi: 10.1101/gad.1471106
[29] Ohta S, Misawa A, Fukaya R, et al. Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells. Journal of Cell Science, 2012, 125(Pt 13): 3210-3220.
doi: 10.1242/jcs.102210 pmid: 22454509
[30] Palumbo S, Tsai T L, Li W J. Macrophage migration inhibitory factor regulates AKT signaling in hypoxic culture to modulate senescence of human mesenchymal stem cells. Stem Cells and Development, 2014, 23(8): 852-865.
doi: 10.1089/scd.2013.0294 pmid: 24274936
[31] Xu X H, Pang J J, Chen Y G, et al. Macrophage migration inhibitory factor (MIF) deficiency exacerbates aging-induced cardiac remodeling and dysfunction despite improved inflammation: role of autophagy regulation. Scientific Reports, 2016, 6: 22488.
doi: 10.1038/srep22488 pmid: 26940544
[32] Mohamad Kamal N S, Safuan S, Shamsuddin S, et al. Aging of the cells: insight into cellular senescence and detection Methods. European Journal of Cell Biology, 2020, 99(6): 151108.
doi: 10.1016/j.ejcb.2020.151108
[33] Fukaya R, Ohta S, Yaguchi T, et al. MIF maintains the tumorigenic capacity of brain tumor-initiating cells by directly inhibiting p53. Cancer Research, 2016, 76(9): 2813-2823.
doi: 10.1158/0008-5472.CAN-15-1011 pmid: 26980763
[34] Xia W Z, Zhuang L, Hou M. Role of lincRNA-p21 in the protective effect of macrophage inhibition factor against hypoxia/serum deprivation-induced apoptosis in mesenchymal stem cells. International Journal of Molecular Medicine, 2018, 42(4): 2175-2184.
[35] Sauler M, Leng L, Trentalange M, et al. Macrophage migration inhibitory factor deficiency in chronic obstructive pulmonary disease. American Journal of Physiology Lung Cellular and Molecular Physiology, 2014, 306(6): L487-L496.
doi: 10.1152/ajplung.00284.2013
[36] Petrenko O, Moll U M. Macrophage migration inhibitory factor MIF interferes with the Rb-E2F pathway. Molecular Cell, 2005, 17(2): 225-236.
pmid: 15664192
[37] Sasaki Y, Kasuya K, Nishihira J, et al. Suppression of tumor growth through introduction of an antisense plasmid of macrophage migration inhibitory factor. International Journal of Molecular Medicine, 2002, 10(5): 579-583.
pmid: 12373295
[38] Wen F Y, Zheng J, Yu J, et al. Macrophage migration inhibitory factor in the regulation of myoblast proliferation and differentiation. Bioscience, Biotechnology, and Biochemistry, 2016, 80(7): 1313-1320.
doi: 10.1080/09168451.2016.1153951
[39] Guo P, Wang J, Liu J X, et al. Macrophage immigration inhibitory factor promotes cell proliferation and inhibits apoptosis of cervical adenocarcinoma. Tumor Biology, 2015, 36(7): 5095-5102.
doi: 10.1007/s13277-015-3161-4
[40] Lan H B, Wang N, Chen Y, et al. Macrophage migration inhibitory factor (MIF) promotes rat airway muscle cell proliferation and migration mediated by ERK1/2 and FAK signaling. Cell Biology International, 2018, 42(1): 75-83.
doi: 10.1002/cbin.10863 pmid: 28851074
[41] Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacology & Therapeutics, 2015, 152: 111-124.
[42] Shrestha S, Adhikary G, Naselsky W, et al. ACTL6A suppresses p21Cip1 tumor suppressor expression to maintain an aggressive mesothelioma cancer cell phenotype. Oncogenesis, 2021, 10(10): 70.
doi: 10.1038/s41389-021-00362-7 pmid: 34689163
[43] Xia W Z, Zhang F Y, Xie C Y, et al. Macrophage migration inhibitory factor confers resistance to senescence through CD74-dependent AMPK-FOXO3a signaling in mesenchymal stem cells. Stem Cell Research & Therapy, 2015, 6(1): 82.
[44] Zhuang L, Xia W Z, Chen D D, et al. Exosomal LncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. Journal of Nanobiotechnology, 2020, 18(1): 157.
doi: 10.1186/s12951-020-00716-0 pmid: 33129330
[45] Ma H, Wang J Y, Thomas D P, et al. Impaired macrophage migration inhibitory factor-AMP-activated protein kinase activation and ischemic recovery in the senescent heart. Circulation, 2010, 122(3): 282-292.
doi: 10.1161/CIRCULATIONAHA.110.953208 pmid: 20606117
[46] Sergiev P V, Dontsova O A, Berezkin G V. Theories of aging: an ever-evolving field. Acta Naturae, 2015, 7(1): 9-18.
pmid: 25926998
[47] Kaspar J W, Niture S K, Jaiswal A K. Nrf2: INrf 2 (Keap1) signaling in oxidative stress. Free Radical Biology and Medicine, 2009, 47(9): 1304-1309.
doi: 10.1016/j.freeradbiomed.2009.07.035 pmid: 19666107
[48] Kimura H, Sato Y, Tajima Y, et al. BTZO-1, a cardioprotective agent, reveals that macrophage migration inhibitory factor regulates ARE-mediated gene expression. Chemistry & Biology, 2010, 17(12): 1282-1294.
doi: 10.1016/j.chembiol.2010.10.011
[49] Mitchell R A, Liao H, Chesney J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53:regulatory role in the innate immune response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 345-350.
[50] Koga K, Kenessey A, Powell S R, et al. Macrophage migration inhibitory factor provides cardioprotection during ischemia/reperfusion by reducing oxidative stress. Antioxidants & Redox Signaling, 2011, 14(7): 1191-1202.
[51] Cotzomi-Ortega I, Rosas-Cruz A, Ramírez-Ramírez D, et al. Autophagy inhibition induces the secretion of macrophage migration inhibitory factor (MIF) with autocrine and paracrine effects on the promotion of malignancy in breast cancer. Biology, 2020, 9(1): 20.
doi: 10.3390/biology9010020
[52] Rojas-Sanchez G, García-Miranda A, Montes-Alvarado J B, et al. Chloroquine induces ROS-mediated macrophage migration inhibitory factor secretion and epithelial to mesenchymal transition in ER-positive breast cancer cell lines. Journal of Mammary Gland Biology and Neoplasia, 2021, 26(4): 341-355.
doi: 10.1007/s10911-021-09503-5 pmid: 34813005
[53] Ke Q D, Costa M. Hypoxia-inducible factor-1 (HIF-1). Molecular Pharmacology, 2006, 70(5): 1469-1480.
doi: 10.1124/mol.106.027029 pmid: 16887934
[54] Fu H, Luo F M, Yang L, et al. Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1alpha dependent pathway. BMC Cell Biology, 2010, 11: 66.
doi: 10.1186/1471-2121-11-66 pmid: 20727156
[55] Alonso D, Serrano E, Bermejo F J, et al. HIF-1α-regulated MIF activation and Nox2-dependent ROS generation promote Leishmania amazonensis killing by macrophages under hypoxia. Cellular Immunology, 2019, 335: 15-21.
doi: S0008-8749(18)30312-5 pmid: 30384962
[56] Safi W, Kraus A, Grampp S, et al. Macrophage migration inhibitory factor is regulated by HIF-1α and cAMP and promotes renal cyst cell proliferation in a macrophage-independent manner. Journal of Molecular Medicine, 2020, 98(11): 1547-1559.
doi: 10.1007/s00109-020-01964-1
[57] Li J, Zhang J H, Xie F J, et al. Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF-κB/HIF-1α pathway in lung cancer. International Journal of Molecular Medicine, 2018, 41(2): 1062-1068.
[58] Hofmann E, Soppert J, Ruhl T, et al. The role of macrophage migration inhibitory factor in adipose-derived stem cells under hypoxia. Frontiers in Physiology, 2021, 12: 638448.
doi: 10.3389/fphys.2021.638448
[59] Oda S, Oda T, Nishi K, et al. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS One, 2008, 3(5): e2215.
[60] Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nature Reviews Immunology, 2003, 3(10): 791-800.
doi: 10.1038/nri1200 pmid: 14502271
[61] Sumaiya K, Langford D, Natarajaseenivasan K, et al. Macrophage migration inhibitory factor (MIF): a multifaceted cytokine regulated by genetic and physiological strategies. Pharmacology & Therapeutics, 2022, 233: 108024.
[62] Basile M S, Battaglia G, Bruno V, et al. The dichotomic role of macrophage migration inhibitory factor in neurodegeneration. International Journal of Molecular Sciences, 2020, 21(8): 3023.
doi: 10.3390/ijms21083023
[63] Sinitski D, Kontos C, Krammer C, et al. Macrophage migration inhibitory factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Thrombosis and Haemostasis, 2019, 119(4): 553-566.
doi: 10.1055/s-0039-1677803 pmid: 30716779
[64] Sauler M, Bucala R, Lee P J. Role of macrophage migration inhibitory factor in age-related lung disease. American Journal of Physiology Lung Cellular and Molecular Physiology, 2015, 309(1): L1-L10.
doi: 10.1152/ajplung.00339.2014
[65] Nobre C C G, de Araújo J M G, Allyrio Araújo de Medeiros Fernandes T, et al. Macrophage migration inhibitory factor (MIF): biological activities and relation with cancer. Pathology & Oncology Research, 2017, 23(2): 235-244.
[66] Li S Y, Nie K, Zhang Q X, et al. Macrophage migration inhibitory factor mediates neuroprotective effects by regulating inflammation, apoptosis and autophagy in Parkinson’s disease. Neuroscience, 2019, 416: 50-62.
doi: 10.1016/j.neuroscience.2019.05.052
[67] Zhang S, Zhao J H, Zhang Y H, et al. Upregulation of MIF as a defense mechanism and a biomarker of Alzheimer’s disease. Alzheimer’s Research & Therapy, 2019, 11(1): 54.
[68] Jung H, Seong H A, Ha H. Critical role of cysteine residue 81 of macrophage migration inhibitory factor (MIF) in MIF-induced inhibition of p53 activity. Journal of Biological Chemistry, 2008, 283(29): 20383-20396.
doi: 10.1074/jbc.M800050200 pmid: 18502749
[69] Zhang J N, Zhang G B, Yang S M, et al. Macrophage migration inhibitory factor regulating the expression of VEGF-C through MAPK signal pathways in breast cancer MCF-7 cell. World Journal of Surgical Oncology, 2016, 14(1): 51.
doi: 10.1186/s12957-016-0797-5
[70] Garcia-Gerique L, García M, Garrido-Garcia A, et al. MIF/CXCR4 signaling axis contributes to survival, invasion, and drug resistance of metastatic neuroblastoma cells in the bone marrow microenvironment. BMC Cancer, 2022, 22(1): 669.
doi: 10.1186/s12885-022-09725-8 pmid: 35715791
[71] Bernhagen J, Krohn R, Lue H Q, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 2007, 13(5): 587-596.
doi: 10.1038/nm1567 pmid: 17435771
[72] Miller E J, Li J, Leng L, et al. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature, 2008, 451(7178): 578-582.
doi: 10.1038/nature06504
[73] Fallica J, Boyer L, Kim B, et al. Macrophage migration inhibitory factor is a novel determinant of cigarette smoke-induced lung damage. American Journal of Respiratory Cell and Molecular Biology, 2014, 51(1): 94-103.
doi: 10.1165/rcmb.2013-0371OC pmid: 24490973
[74] Mathew B, Jacobson J R, Siegler J H, et al. Role of migratory inhibition factor in age-related susceptibility to radiation lung injury via NF-E2-related factor-2 and antioxidant regulation. American Journal of Respiratory Cell and Molecular Biology, 2013, 49(2): 269-278.
doi: 10.1165/rcmb.2012-0291OC pmid: 23526214
[75] Kariya S, Okano M, Maeda Y, et al. Role of macrophage migration inhibitory factor in age-related hearing loss. Neuroscience, 2014, 279: 132-138.
doi: 10.1016/j.neuroscience.2014.08.042 pmid: 25194790
[76] Rowe M A, Harper L R, McNulty M A, et al. Reduced osteoarthritis severity in aged mice with deletion of macrophage migration inhibitory factor. Arthritis & Rheumatology (Hoboken, N J), 2017, 69(2): 352-361.
[77] Liu M, Xie Z K, Sun G, et al. Macrophage migration inhibitory factor may play a protective role in osteoarthritis. Arthritis Research & Therapy, 2021, 23(1): 59.
[78] Ashcroft G S, Mills S J, Lei K J, et al. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. The Journal of Clinical Investigation, 2003, 111(9): 1309-1318.
doi: 10.1172/JCI16288
[79] Mahalingam D, Patel M R, Sachdev J C, et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. British Journal of Clinical Pharmacology, 2020, 86(9): 1836-1848.
doi: 10.1111/bcp.v86.9
[80] Hussain F, Freissmuth M, Völkel D, et al. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Molecular Cancer Therapeutics, 2013, 12(7): 1223-1234.
doi: 10.1158/1535-7163.MCT-12-0988 pmid: 23619302
[81] Stein R, Smith M R, Chen S S, et al. Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2009, 15(8): 2808-2817.
doi: 10.1158/1078-0432.CCR-08-1953
[82] Ladikou E E, Chevassut T, Pepper C J, et al. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia. British Journal of Haematology, 2020, 189(5): 815-825.
doi: 10.1111/bjh.16456 pmid: 32135579
[83] Ghobrial I M, Liu C J, Redd R A, et al. A phase Ib/II trial of the first-in-class anti-CXCR4 antibody ulocuplumab in combination with lenalidomide or bortezomib plus dexamethasone in relapsed multiple myeloma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2020, 26(2): 344-353.
doi: 10.1158/1078-0432.CCR-19-0647
[84] Treon S P, Meid K, Hunter Z R, et al. Phase1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenström macroglobulinemia. Blood, 2021, 138(17): 1535-1539.
[85] Kashyap M K, Kumar D, Jones H, et al. Ulocuplumab (BMS-936564/MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget, 2016, 7(3): 2809-2822.
doi: 10.18632/oncotarget.6465 pmid: 26646452
[86] Cheng Z Q, Zhou S Y, Wang X F, et al. Characterization and application of two novel monoclonal antibodies against human CXCR4: cell proliferation and migration regulation for glioma cell line in vitro by CXCR4/SDF-1alpha signal. Hybridoma (2005), 2009, 28(1): 33-41.
doi: 10.1089/hyb.2008.0069
[87] Kok T, Wasiel A A, Cool R H, et al. Small-molecule inhibitors of macrophage migration inhibitory factor (MIF) as an emerging class of therapeutics for immune disorders. Drug Discovery Today, 2018, 23(11): 1910-1918.
doi: S1359-6446(17)30581-0 pmid: 29936245
[88] Liu Y Y, Liu Y N, Wang Q F, et al. MIF inhibitor ISO-1 alleviates severe acute pancreatitis-associated acute kidney injury by suppressing the NLRP 3 inflammasome signaling pathway. International Immunopharmacology, 2021, 96: 107555.
doi: 10.1016/j.intimp.2021.107555
[89] Cheng B, Wang Q F, Song Y D, et al. MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo. Scientific Reports, 2020, 10: 6741.
doi: 10.1038/s41598-020-63778-y pmid: 32317702
[90] Zheng L, Gao J W, Jin K T, et al. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway. The FASEB Journal, 2019, 33(6): 7667-7683.
doi: 10.1096/fsb2.v33.6
[91] Wang J P, Hu W M, Wang K S, et al. Repertaxin, an inhibitor of the chemokine receptors CXCR1 and CXCR2, inhibits malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances efficacy of 5-fluorouracil. International Journal of Oncology, 2016, 48(4): 1341-1352.
doi: 10.3892/ijo.2016.3371
[92] Bai F W, Asojo O A, Cirillo P, et al. A novel allosteric inhibitor of macrophage migration inhibitory factor (MIF). The Journal of Biological Chemistry, 2012, 287(36): 30653-30663.
doi: 10.1074/jbc.M112.385583
[93] Martin P, Furman R R, Rutherford S, et al. Phase I study of the anti-CD 74 monoclonal antibody milatuzumab (hLL1) in patients with previously treated B-cell lymphomas. Leukemia & Lymphoma, 2015, 56(11): 3065-3070.
[94] Van Bockstaele F, Holz J B, Revets H. The development of nanobodies for therapeutic applications. Current Opinion in Investigational Drugs (London, England: 2000), 2009, 10(11): 1212-1224.
[95] Xu J L, Xu K, Jung S, et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595(7866): 278-282.
doi: 10.1038/s41586-021-03676-z
[96] Xiang Y F, Nambulli S, Xiao Z Y, et al. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science, 2020, 370(6523): 1479-1484.
doi: 10.1126/science.abe4747 pmid: 33154108
[97] Sparkes A, De Baetselier P, Brys L, et al. Novel half-life extended anti-MIF nanobodies protect against endotoxic shock. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2018, 32(6): 3411-3422.
doi: 10.1096/fsb2.v32.6
[98] Xiao Z P, Song S S, Chen D, et al. Proteolysis targeting Chimera (PROTAC) for macrophage migration inhibitory factor (MIF) has anti-proliferative activity in lung cancer cells. Angewandte Chemie (International Ed in English), 2021, 60(32): 17514-17521.
doi: 10.1002/anie.v60.32
[1] 胡文宇,李硕硕,程金波,袁增强. 不同类型神经细胞对低氧的敏感性研究*[J]. 中国生物工程杂志, 2022, 42(7): 1-11.
[2] 邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[3] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[4] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[5] 麻攀, 刘洪涛, 许青松, 白雪芳, 杜昱光. 壳寡糖缓解甲萘醌诱导巨噬细胞损伤机制初探[J]. 中国生物工程杂志, 2011, 31(06): 18-21.
[6] 芦秀丽1刘剑利1,曹向宇,侯芳芳,高兵. 24-脱氢胆固醇还原酶抗氧化应激作用的功能结构域的鉴定[J]. 中国生物工程杂志, 2009, 29(05): 50-54.
[7] 李兰,潘庆玉,沈伟,潘庆杰,周艳荣,邓继先. 外源基因转染导致山羊体细胞过快衰老与端粒缩短[J]. 中国生物工程杂志, 2006, 26(06): 45-49.