Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (8): 1-12    DOI: 10.13523/j.cb.2205010
研究报告     
基于分子模拟的河鲀毒素核酸适配体的连续优化*
颜志超,宋梦华,刘建平,黄强**()
复旦大学生命科学学院 上海 200438
Molecular Simulation-based Continuous Optimization of Nucleic-acid Aptamers Against Tetrodotoxin
YAN Zhi-chao,SONG Meng-hua,LIU Jian-ping,HUANG Qiang**()
School of Life Sciences, Fudan University, Shanghai 200438, China
 全文: PDF(5607 KB)   HTML
摘要:

河鲀毒素(tetrodotoxin, TTX)是一种生物碱类神经毒素,其中毒事件在世界范围内广泛发生,严重危害到人类健康,但尚无特效解毒剂,因此TTX的检测对食品安全领域有重大意义。为了得到更高效的TTX识别元件,在分子模拟指导下对SELEX筛选所得的核酸适配体TTX-27进行了连续优化。首先,使用Mini-hairpin结构替换阻碍TTX结合的茎环结构,使TTX更易与截短型适配体结合,然后将T39、C40碱基突变为C39、T40碱基,并对C39进行了2'-OH修饰,以增强结合区域碱基与TTX的氢键作用和范德瓦耳斯相互作用。微量热泳动(microscale thermophoresis, MST)实验证实,经截短、碱基突变和化学修饰的各适配体变体的亲和力均有提高,其中化学修饰变体TTX-D2-X-R结合TTX的解离平衡常数Kd为1.08 nmol/L,相较于TTX-27的亲和力提高了75.5倍。表明基于分子模拟的截短-突变-化学修饰是核酸适配体post-SELEX优化的有效途径,所得的适配体变体TTX-D2-X-R在TTX检测领域有着潜在的应用价值。

关键词: 河鲀毒素核酸适配体分子模拟碱基截短碱基突变化学修饰    
Abstract:

Tetrodotoxin (TTX) is an alkaloid neurotoxin, and its poisoning cases occurr worldwide and therefore seriously threat human health. However, there is no specific antidote yet for TTX, so the detection of TTX is of great importance in the field of food safety. To obtain a more efficient TTX recognition element, guided by molecular simulations, a DNA aptamer (TTX-27) previously discovered by SELEX screening was continuously optimized. First, the stem-loop structure, which hinders the TTX binding, was replaced with a mini-hairpin structure to make the TTX bind more easily to the truncated aptamer; next, T39 and C40 bases were mutated to C and T bases, respectively, and C39 was also modified with 2'-OH to enhance the hydrogen bonding and van der Waals interactions of the bases with TTX. Microscale thermophoresis (MST) experiments confirmed that the affinities of the aptamer variants were increased by the truncation, base mutation and chemical modification. The dissociation equilibrium constant Kd of the binding of the chemically modified variant TTX-D2-X-R to TTX was 1.08 nmol/L, which increased 75.5 times compared to that of TTX-27. Thus, this study demonstrates that the molecular simulation-based truncation-mutation-chemical modification is an effective approach to the post-SELEX optimization of nucleic-acid aptamers, and the resulting aptamer variant TTX-D2-X-R has potential applications in the field of TTX detection.

Key words: Tetrodotoxin    Aptamer    Molecular simulation    Base truncation    Base mutation    Chemical modification
收稿日期: 2022-05-05 出版日期: 2022-09-07
ZTFLH:  Q81  
基金资助: * 国家科技重大专项“重大新药开发”课题(2018ZX09J18112);国家自然科学基金(31971377);国家自然科学基金(31671386)
通讯作者: 黄强     E-mail: huangqiang@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
颜志超
宋梦华
刘建平
黄强

引用本文:

颜志超,宋梦华,刘建平,黄强. 基于分子模拟的河鲀毒素核酸适配体的连续优化*[J]. 中国生物工程杂志, 2022, 42(8): 1-12.

YAN Zhi-chao,SONG Meng-hua,LIU Jian-ping,HUANG Qiang. Molecular Simulation-based Continuous Optimization of Nucleic-acid Aptamers Against Tetrodotoxin. China Biotechnology, 2022, 42(8): 1-12.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2205010        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I8/1

图1  TTX-27 的二级(a)和三级(b)结构
名称 碱基序列(5'-3') 碱基数
TTX-27 ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTTCATAGACTAGTTAATAATAACTATGTGCGTCTACCTCTTGA 80
TTX-D2 ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTTCATAGACCGAAAGCGGTCTACCTCTTGA 67
TTX-D2-X ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTCTATAGACCGAAAGCGGTCTACCTCTTGA 67
TTX-D2-X-R ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTr(C)TATAGACCGAAAGCGGTCTACCTCTTGA 67
表1  核酸适配体序列
图2  TTX-27∶TTX复合物的RMSD值(a) 及TTX-27和TTX自发结合模拟图(b)
图3  基于残基的TTX-27截短优化前后相互作用分析图
名称 碱基序列(5'-3') 结合自由能
ΔG/(kcal/mol)
TTX-27 ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTTCATAGACTAGTTAATAATAACTATGTGCGTCTACCTCTTGA -14.94
TTX-5S ATAGGAGTGCTCCATTTATTCTAAATTTCATAGACTAGTTAATAATAACTATGTGCGTCTACCTCTTGA -16.12
TTX-3S ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTTCATAGACTGTGCGTCTACCTCTTGA -15.21
TTX-D1 ATAGCGAAAGCGCATTTATTCTAAATTTCATAGACTAGTTAATAATAACTATGTGCGTCTACCTCTTGA -15.89
TTX-D2 ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTCTATAGACCGAAAGCGGTCTACCTCTTGA -17.72
表2  TTX-27变体对接能量预测值
图4  TTX-27及变体的分子模拟结果分析图和微量热泳动实验结果图
原有
碱基
突变
碱基
一轮突变
ΔG /(kcal/mol)
二轮突变
ΔG/(kcal/mol)
三轮突变
ΔG/(kcal/mol)
T38 A -6.36 -8.07 -7.25
G -5.11 * *
C * * *
T39 A -6.69 -7.78 C
G -5.11 -7.37
C -7.77 -8.75
C40 A -6.90 T T
G -8.05
T -8.20
C61 A * * *
G -6.49 -6.97 *
T * * *
T62 A -7.62 -7.65 -7.14
G -7.05 -7.52 -7.35
C -7.34 -7.16 -6.74
C63 A -5.94 -7.83 -8.69
G -7.13 -7.94 -6.42
T * * -6.95
表3  多轮突变结合自由能值
图5  基于残基的TTX-D2-X化学修饰前后相互作用分析图
碱基名称 距离/Å
C39 3.4
A41 7.1
C60 7.2
C61 6.3
C63 3.7
表4  各结合碱基脱氧核糖C-2与TTX距离值
图6  TTX-27连续优化前后与TTX的分子间相互作用
[1] Lin S J, Hwang D F. Possible source of tetrodotoxin in the starfish Astropecten scoparius. Toxicon, 2001, 39(4): 573-579.
pmid: 11024497
[2] Asakawa, Matsumoto, Umezaki, et al. Toxicity and toxin composition of the greater blue-ringed Octopus Hapalochlaena lunulata from ishigaki island, Okinawa prefecture, Japan. Toxins, 2019, 11(5): 245.
doi: 10.3390/toxins11050245
[3] Mosher H S, Fuhrman F A, Buchwald H D, et al. Tarichatoxin-tetrodotoxin: a potent neurotoxin. Science, 1964, 144(3622): 1100-1110.
doi: 10.1126/science.144.3622.1100
[4] Kim Y H, Brown G B, Mosher F A. Tetrodotoxin: occurrence in atelopid frogs of Costa rica. Science, 1975, 189(4197): 151-152.
pmid: 1138374
[5] Shen H Z, Li Z Q, Jiang Y, et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science, 2018, 362(6412): eaau2596.
doi: 10.1126/science.aau2596
[6] Abal P, Louzao M C, Antelo A, et al. Acute oral toxicity of tetrodotoxin in mice: determination of lethal dose 50 (LD50) and no observed adverse effect level (NOAEL). Toxins, 2017, 9(3): 75.
doi: 10.3390/toxins9030075
[7] Hungerford J M. Committee on natural toxins and food allergens: marine and freshwater toxins. Journal of AOAC INTERNATIONAL, 2019, 89(1): 248-269.
doi: 10.1093/jaoac/89.1.248
[8] Chen L, Qiu J L, Tang Y J, et al. Rapid in vivo determination of tetrodotoxin in pufferfish (Fugu) muscle by solid-phase microextraction coupled to high-performance liquid chromatography tandem mass spectrometry. Talanta, 2017, 171: 179-184.
doi: S0039-9140(17)30505-2 pmid: 28551126
[9] Reverté L, Rambla-Alegre M, Leonardo S, et al. Development and validation of a maleimide-based enzyme-linked immunosorbent assay for the detection of tetrodotoxin in oysters and mussels. Talanta, 2018, 176: 659-666.
doi: S0039-9140(17)30861-5 pmid: 28917804
[10] Campàs M, Reverté J, Rambla-Alegre M, et al. A fast magnetic bead-based colorimetric immunoassay for the detection of tetrodotoxins in shellfish. Food and Chemical Toxicology, 2020, 140: 111315.
doi: 10.1016/j.fct.2020.111315
[11] Zhang M, Wang Y, Wu P, et al. Development of a highly sensitive detection method for TTX based on a magnetic bead-aptamer competition system under triple cycle amplification. Analytica Chimica Acta, 2020, 1119: 18-24.
doi: S0003-2670(20)30469-4 pmid: 32439050
[12] Lan Y F, Qin G J, Wei Y L, et al. Highly sensitive analysis of tetrodotoxin based on free-label fluorescence aptamer sensing system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 411-418.
doi: 10.1016/j.saa.2019.04.068
[13] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510.
pmid: 2200121
[14] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822.
doi: 10.1038/346818a0
[15] 邵碧英, 陈彬, 陈文炳, 等. 河豚毒素DNA适配子的制备及应用. 食品科学, 2014, 35(24): 205-208.
Shao B Y, Chen B, Chen W B, et al. Preparation and application of tetrodotoxin DNA aptamer. Food Science, 2014, 35(24): 205-208.
[16] 邵碧英, 高兴, 杨方, 等. 河豚毒素DNA适配子的筛选与结构分析. 中国食品学报, 2012, 12(2): 137-143.
Shao B Y, Gao X, Yang F, et al. Screening and structure analysis of the aptamer against tetrodotoxin. Journal of Chinese Institute of Food Science and Technology, 2012, 12(2): 137-143.
[17] Gu H J, Duan N, Xia Y, et al. Magnetic separation-based multiple SELEX for effectively selecting aptamers against saxitoxin, domoic acid, and tetrodotoxin. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9801-9809.
doi: 10.1021/acs.jafc.8b02771
[18] Shkembi X, Skouridou V, Svobodova M, et al. Hybrid antibody-aptamer assay for detection of tetrodotoxin in pufferfish. Analytical Chemistry, 2021, 93(44): 14810-14819.
doi: 10.1021/acs.analchem.1c03671
[19] Cowperthwaite M C, Ellington A D. Bioinformatic analysis of the contribution of primer sequences to aptamer structures. Journal of Molecular Evolution, 2008, 67(1): 95-102.
doi: 10.1007/s00239-008-9130-4 pmid: 18594898
[20] Xu G H, Zhao J J, Liu N, et al. Structure-guided post-SELEX optimization of an ochratoxin A aptamer. Nucleic Acids Research, 2019, 47(11): 5963-5972.
doi: 10.1093/nar/gkz336
[21] Peng C G, Damha M J. G-quadruplex induced stabilization by 2'-deoxy-2'-fluoro-d-arabinonucleic acids (2'F-ANA). Nucleic Acids Research, 2007, 35(15): 4977-4988.
doi: 10.1093/nar/gkm520
[22] Song M H, Li G, Zhang Q, et al. De novo post-SELEX optimization of a G-quadruplex DNA aptamer binding to marine toxin gonyautoxin 1/4. Computational and Structural Biotechnology Journal, 2020, 18: 3425-3433.
doi: 10.1016/j.csbj.2020.10.041
[23] Zheng X, Hu B, Gao S X, et al. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon, 2015, 101: 41-47.
doi: 10.1016/j.toxicon.2015.04.017 pmid: 25937337
[24] Khoshbin Z, Housaindokht M R. Computer-aided aptamer design for sulfadimethoxine antibiotic: step by step mutation based on MD simulation approach. Journal of Biomolecular Structure & Dynamics, 2021, 39(9): 3071-3079.
[25] Reuter J S, Mathews D H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 2010, 11: 129.
doi: 10.1186/1471-2105-11-129
[26] Yesselman J D, Das R. Modeling small noncanonical RNA motifs with the Rosetta FARFAR server. Methods in Molecular Biology (Clifton, N J), 2016, 1490: 187-198.
[27] Morris G M, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 2009, 30(16): 2785-2791.
doi: 10.1002/jcc.21256
[28] Bitencourt-Ferreira G, Pintro V O, de Azevedo W F Jr. Docking with autodock4. Methods in Molecular Biology. New York: Springer New York, 2019: 125-148.
[29] Liu Q, Herrmann A, Huang Q. Surface binding energy landscapes affect phosphodiesterase isoform-specific inhibitor selectivity. Computational and Structural Biotechnology Journal, 2019, 17: 101-109.
doi: 10.1016/j.csbj.2018.11.009
[30] Wang J M, Wang W, Kollman P A, et al. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 2006, 25(2): 247-260.
doi: 10.1016/j.jmgm.2005.12.005
[31] Wang J M, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25(9): 1157-1174.
doi: 10.1002/jcc.20035
[32] Sousa da Silva A W, Vranken W F. ACPYPE - AnteChamber PYthon parser interface. BMC Research Notes, 2012, 5: 367.
doi: 10.1186/1756-0500-5-367 pmid: 22824207
[33] Abraham M J, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2: 19-25.
[34] Lindahl V, Villa A, Hess B. Sequence dependency of canonical base pair opening in the DNA double helix. PLoS Computational Biology, 2017, 13(4): e1005463.
doi: 10.1371/journal.pcbi.1005463
[35] Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
doi: 10.1063/1.464397
[36] Hess B, Bekker H, Berendsen H J C, et al. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
[37] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 1984, 81(8): 3684-3690.
doi: 10.1063/1.448118
[38] Hirao I, Kimoto M, Lee K H. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie, 2018, 145: 15-21.
doi: 10.1016/j.biochi.2017.09.007
[39] Wakita M, Kotani N, Akaike N. Tetrodotoxin abruptly blocks excitatory neurotransmission in mammalian CNS. Toxicon, 2015, 103: 12-18.
doi: 10.1016/j.toxicon.2015.05.003
[1] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[2] 刘少金,冯雪娇,王俊姝,肖正强,程平生. 我国核酸药物市场分析及对策建议[J]. 中国生物工程杂志, 2021, 41(7): 99-109.
[3] 苏艺,蒋灵丽,林俊生. 小分子靶标与其核酸适配体亲和力的表征方法 *[J]. 中国生物工程杂志, 2019, 39(11): 96-104.
[4] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[5] 周妮, 陈丹, 姚冬生, 谢春芳, 刘大岭. 莱克多巴胺核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2014, 34(1): 42-49.
[6] 陈丹, 姚冬生, 谢春芳, 刘大岭. 四环素核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2013, 33(11): 56-62.
[7] 朱怡然, 范雪荣, 王强, 陈忍忍, 余圆圆, 袁久刚. 右旋糖酐对Savinase蛋白酶的化学修饰及酶学性质研究[J]. 中国生物工程杂志, 2011, 31(10): 45-49.
[8] 王旭东 李晓晖 苏志国 修志龙. 蛋白药物的聚乙二醇定点修饰策略与最佳位点[J]. 中国生物工程杂志, 2010, 30(04): 101-109.
[9] 赵兴秀 何义国 姚兴川 杜林方 孟延发. PEG-重组酵母尿酸酶结合物的基本特性研究[J]. 中国生物工程杂志, 2009, 29(11): 23-28.
[10] 李智华,胡满仓,阎玲梅,赵玉娇,杨旭,彭正华,徐维明,李健峰. 人白细胞介素11的定点聚乙二醇修饰[J]. 中国生物工程杂志, 2009, 29(06): 20-24.
[11] 边蕾,石屹峰. 蛋白质药物长效化技术的现状和进展[J]. 中国生物工程杂志, 2009, 29(02): 114-118.
[12] 覃益民,唐江涛,魏远安,姚评佳,梁锦添. 米曲霉GX0011β-果糖基转移酶的化学修饰及活性中心研究[J]. 中国生物工程杂志, 2008, 28(6): 84-88.
[13] 邢文超,曹旭,贠强,苏志国. 新型蛋白质修饰剂的合成及修饰牛血红蛋白的初步研究[J]. 中国生物工程杂志, 2006, 26(03): 6-10.
[14] 鲁艳芹, 韩金祥. DNA微阵列基片的化学处理[J]. 中国生物工程杂志, 2002, 22(6): 69-74.
[15] 松沢洋, 王清芝. 如何改造蛋白质[J]. 中国生物工程杂志, 1987, 7(3): 53-58.