Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (6): 1-11    DOI: 10.13523/j.cb.2201020
研究报告     
工程化外泌体介导巨噬细胞清除肿瘤外泌体*
王璐1,陈梦丽1,何芳1,2,项建1,尹斌成1,2,3,**(),叶邦策1,2
1.华东理工大学生物反应器国家重点实验室 上海 200237
2.浙江工业大学药学院 长三角绿色制药协同创新中心 杭州 310032
3.石河子大学化学化工学院 石河子 832003
Clearance of Tumor Exosomes by Engineered Exosomes-assisted Phagocytosis of Macrophages
WANG Lu1,CHEN Meng-li1,HE Fang1,2,XIANG Jian1,YIN Bin-cheng1,2,3,**(),YE Bang-ce1,2
1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
3. School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 China
 全文: PDF(6696 KB)   HTML
摘要:

目的:通过膜表面修饰改造技术构建工程化外泌体(engineered exosomes,enExos),并以此介导巨噬细胞特异性清除膜表面富含表皮生长因子受体(epidermal growth factor receptor,EGFR)的肿瘤外泌体。方法:利用表面展示技术获得膜表面展示趋化因子(chemokine 8,CXCL8)的外泌体,同时在其磷脂双分子层上修饰EGFR核酸适配体制备工程化外泌体;纳米颗粒跟踪和纳米粒度电位分析enExos的尺寸、电位;CCK-8试剂盒检测细胞活力;透射电子显微镜观察enExos与高表达EGFR的肿瘤外泌体的特异性结合;荧光成像技术及流式细胞术分析探究enExos靶向趋化巨噬细胞吞噬高表达EGFR的肿瘤外泌体。结果:成功构建膜表面展示EGFR与CXCL8的工程化外泌体,enExos可以特异性识别并捕获高表达EGFR的肿瘤外泌体,同时利用其趋化因子CXCL8特异性靶向巨噬细胞膜表面趋化因子受体CXCR1/CXCR2,刺激巨噬细胞对肿瘤外泌体的捕获及清除。结论:工程化外泌体促进了特定肿瘤外泌体的清除,为后续深入研究工程化外泌体抑制癌症转移的作用奠定基础,并期望为癌症转移治疗提供新的研究方向。

关键词: 工程化外泌体肿瘤外泌体表皮生长因子受体白细胞介素-8吞噬    
Abstract:

Objective: This paper aims to construct engineered exosomes (enExos) by membrane surface modification technology, and use enExos to mediate the removal of epidermal growth factor receptor (EGFR)-rich tumor exosomes on the membrane surface by macrophages. Methods: The exosomes displaying the chemokine 8 (CXCL8) on the membrane surface were obtained by surface display technology. Meanwhile, the EGFR nucleic acid aptamer was modified on the CXCL8-expressing exosomes to prepare enExos. The size and potential of enExos were analyzed by nanoparticle tracking analysis and nanoparticle size potentiometer. Cell viability was measured by CCK-8 assay. The specific binding of enExos to EGFR-expressing tumor exosomes was observed by transmission electron microscopy. Finally, the phagocytosis of tumor exosomes with high EGFR expression by enExos-targeted chemotactic macrophages was detected by fluorescence imaging and flow cytometry. Results: The enExos with EGFR and CXCL8 displayed on the membrane surface were successfully constructed. enExos can specifically recognize and capture tumor exosomes with high EGFR expression, and at the same time use their chemokine CXCL8 to specifically target the macrophage membrane. Surface chemokine receptors CXCR1/CXCR2 stimulate the capture and clearance of tumor exosomes by macrophages. Conclusion: enExos promote the clearance of specific tumor exosomes, laying a foundation for the subsequent in-depth study of their role in inhibiting cancer metastasis, and they are expected to provide new research directions for cancer metastasis therapy.

Key words: Engineered exosomes(enExos)    Tumor exosomes    Epidermal growth factor receptor    Interleukin-8    Phagocytosis
收稿日期: 2022-01-15 出版日期: 2022-07-07
ZTFLH:  Q813  
基金资助: *国家自然科学基金(21822402);国家自然科学基金(22134003);浙江省自然科学基金联合基金(LHDMZ22H300008)
通讯作者: 尹斌成     E-mail: binchengyin@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王璐
陈梦丽
何芳
项建
尹斌成
叶邦策

引用本文:

王璐,陈梦丽,何芳,项建,尹斌成,叶邦策. 工程化外泌体介导巨噬细胞清除肿瘤外泌体*[J]. 中国生物工程杂志, 2022, 42(6): 1-11.

WANG Lu,CHEN Meng-li,HE Fang,XIANG Jian,YIN Bin-cheng,YE Bang-ce. Clearance of Tumor Exosomes by Engineered Exosomes-assisted Phagocytosis of Macrophages. China Biotechnology, 2022, 42(6): 1-11.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2201020        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I6/1

图1  工程化外泌体(enExos)的设计及消除肿瘤外泌体的工作原理示意图
名称 序列(5'-3')
EGFR/AP-FAM Cholesterol-TTTTTTTTTTTTTACCAGTGCGATGCTCAGTGCCGTTT CTTCTCTTTCGCTTTTTTTGCTTTTGAGCATGCTGAC
GCATTCGGTTGAC-FAM
EGFR/AP Cholesterol-TTTTTTTTTTTTTACCAGTGCGATGCTCAGTGCCGTTTCTTCTCTTTCGCTTTTTTTGCTTTTGAGCATGCTGACG
CATTCGGTTGAC
B BHQ1-GTCAACCGAATGCGTCAGCATGCTCAAA
表1  本研究中使用的核酸适配体序列
图2  CXCL8-Exos的制备与表征
图3  外泌体的工程化及表征
图4  enExos的细胞相容性分析
图5  enExos靶向识别巨噬细胞
图6  EGFR适配体的功能验证
图7  体外enExos对肿瘤外泌体的识别与结合
图8  enExos介导巨噬细胞吞噬肿瘤细胞
[1] Xu Z J, Zeng S S, Gong Z C, et al. Exosome-based immunotherapy: a promising approach for cancer treatment. Molecular Cancer, 2020, 19(1): 160.
doi: 10.1186/s12943-020-01278-3
[2] Marleau A M, Chen C S, Joyce J A, et al. Exosome removal as a therapeutic adjuvant in cancer. Journal of Translational Medicine, 2012, 10: 134.
doi: 10.1186/1479-5876-10-134
[3] Yokoi A, Ochiya T. Exosomes and extracellular vesicles: Rethinking the essential values in cancer biology. Seminars in Cancer Biology, 2021, 74: 79-91.
doi: 10.1016/j.semcancer.2021.03.032
[4] Guo Y X, Ji X, Liu J B, et al. Effects of exosomes on pre-metastatic niche formation in tumors. Molecular Cancer, 2019, 18(1): 39.
doi: 10.1186/s12943-019-0995-1
[5] Morad G, Carman C V, Hagedorn E J, et al. Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis. ACS Nano, 2019, 13(12): 13853-13865.
doi: 10.1021/acsnano.9b04397
[6] Obenauf A C, Massagué J. Surviving at a distance: organ-specific metastasis. Trends in Cancer, 2015, 1(1): 76-91.
doi: S2405-8033(15)00010-2 pmid: 28741564
[7] Steinbichler T B, Dudás J, Riechelmann H, et al. The role of exosomes in cancer metastasis. Seminars in Cancer Biology, 2017, 44: 170-181.
doi: S1044-579X(17)30024-X pmid: 28215970
[8] Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine (Berlin, Germany), 2013, 91(4): 431-437.
doi: 10.1007/s00109-013-1020-6
[9] Nishida-Aoki N, Tominaga N, Takeshita F, et al. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Molecular Therapy, 2017, 25(1): 181-191.
doi: S1525-0016(16)45363-3 pmid: 28129113
[10] Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cellular & Molecular Immunology, 2020, 17(8): 807-821.
[11] Ye H, Wang K Y, Lu Q, et al. Nanosponges of circulating tumor-derived exosomes for breast cancer metastasis inhibition. Biomaterials, 2020, 242: 119932.
doi: 10.1016/j.biomaterials.2020.119932
[12] Xie X, Nie H, Zhou Y, et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nature Communications, 2019, 10(1): 5476.
doi: 10.1038/s41467-019-13316-w
[13] Yin W M, Li Y W, Gu Y Q, et al. Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41(7): 902-910.
doi: 10.1038/s41401-020-0417-3
[14] Cheng L L, Zhang X G, Tang J J, et al. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD 47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials, 2021, 275: 120964.
doi: 10.1016/j.biomaterials.2021.120964
[15] Fu Z Y, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. International Journal of Molecular Sciences, 2020, 21(23): 9123.
doi: 10.3390/ijms21239123
[16] Burgos-Ravanal R, Campos A, Díaz-Vesga M C, et al. Extracellular vesicles as mediators of cancer disease and as nanosystems in theranostic applications. Cancers, 2021, 13(13): 3324.
doi: 10.3390/cancers13133324
[17] Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity, 2012, 36(5): 705-716.
doi: 10.1016/j.immuni.2012.05.008 pmid: 22633458
[18] Wang D L, Song Y L, Zhu Z, et al. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochemical and Biophysical Research Communications, 2014, 453(4): 681-685.
doi: 10.1016/j.bbrc.2014.09.023
[19] Jia D L, Yang Y J, Yuan F J, et al. Increasing the antitumor efficacy of doxorubicin liposomes with coupling an anti-EGFR affibody in EGFR-expressing tumor models. International Journal of Pharmaceutics, 2020, 586: 119541.
doi: 10.1016/j.ijpharm.2020.119541
[20] Delcanale P, Porciani D, Pujals S, et al. Aptamers with tunable affinity enable single-molecule tracking and localization of membrane receptors on living cancer cells. Angewandte Chemie International Edition, 2020, 59(42): 18546-18555.
[21] Xu M, Feng T, Liu B W, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics, 2021, 11(18): 8926-8944.
doi: 10.7150/thno.62330
[1] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[2] 李文,陈洁,胡伟男,漆亚云,付毅红,刘佳敏,王贞超,欧阳贵平. EGFR耐药突变及其小分子抑制剂研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 97-104.
[3] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[4] 韦东, 吾鲁木汗·那孜尔别克, 段世雄, 严芳, 恩特马克·布拉提白. 禽多杀性巴氏杆菌C48-3株外膜蛋白H的致病作用[J]. 中国生物工程杂志, 2014, 34(06): 31-39.
[5] 王志明, 高健, 李耿. 治疗性单克隆抗体药物的现状及发展趋势[J]. 中国生物工程杂志, 2013, 33(6): 117-124.
[6] 周敏 石必枝 顾健人 李宗海. 抗EGFRvIII噬菌体抗体库的构建和筛选[J]. 中国生物工程杂志, 2010, 30(04): 1-7.