Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (10): 97-104    DOI: 10.13523/j.cb.20191012
综述     
EGFR耐药突变及其小分子抑制剂研究进展 *
李文1,陈洁1,胡伟男1,漆亚云1,付毅红1,刘佳敏1,王贞超1,2,3,**(),欧阳贵平1,3,4,**()
1 贵州大学药学院 贵阳 550025
2 贵州医科大学药用植物功效与利用国家重点实验室 贵阳 550014
3 贵州省合成药物工程实验室 贵阳 550025
4 贵州大学精细化工研究开发中心 贵阳 550025
Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors
LI Wen1,CHEN Jie1,HU Wei-nan1,QI Ya-yun1,FU Yi-hong1,LIU Jia-min1,WANG Zhen-chao1,2,3,**(),OUYANG Gui-ping1,3,4,**()
1 College of Pharmacy, Guizhou University, Guiyang 550025, China
2 State Key Laboratory of Efficacy and Utilization of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
3 Center for Research of Fine Chemicals, Guizhou University, Guiyang 550025, China
4 Center for Research of Fine Chemicals, Guizhou University, Guiyang 550025, China
 全文: PDF(1543 KB)   HTML
摘要:

表皮生长因子受体(epidermal growth factor receptor, EGFR)是一种具有酪氨酸激酶活性的重要跨膜受体,在多种恶性肿瘤中异常表达,与肿瘤细胞增殖、分化、转移等生命活动密切相关。EGFR已成为治疗肿瘤的靶点,针对该靶点设计的药物主要分为单克隆抗体和小分子抑制剂两大类,小分子抑制剂易导致EGFR出现突变而产生耐药现象,从而影响其临床应用。突变主要发生在酪氨酸激酶区域ATP结合位点附近,主要为19号外显子上的缺失突变,18号和21号外显子上的点突变。针对近几十年来国内外研究者对EGFR出现的耐药突变类型,及其与小分子抑制剂的相互作用方式进行综述,以期为后续EGFR靶点药物的研发提供参考。

关键词: 表皮生长因子受体EGFR小分子抑制剂耐药作用方式    
Abstract:

Epidermal growth factor receptor (EGFR) is an important transmembrane receptor with tyrosine kinase activity, which is abnormally expressed in a variety of malignant tumors and closely related to the proliferation, differentiation, metastasis and other life activities of tumor cells. At present, EGFR has been considered as a target for the treatment of tumors, and the drugs targeting on EGFR are mainly divided into two categories, one is monoclonal antibody drugs, and the other is small molecular kinase inhibitors. Small molecule inhibitors are prone to lead to EGFR mutation and drug resistance, thus affecting their clinical application. These mutations occur mainly near the ATP-binding site of the tyrosine kinase region, which are mainly deletion mutations on exon 19 and point mutations on exons 18 and 21.The types of drug-resistant mutations of EGFR and the ways in which they interact with small molecule inhibitors have been reviewed, with a view to providing references for the subsequent research and development of EGFR targeted drugs.

Key words: EGFR    EGFR small molecule inhibitors    Resistance    Interaction
收稿日期: 2019-03-02 出版日期: 2019-11-12
ZTFLH:  Q814  
基金资助: * 药用植物功效与利用国家重点实验室(FAMP201707K);国家自然科学基金(21867004);贵州省科技计划项目(黔科合基础[2018]1051)
通讯作者: 王贞超,欧阳贵平     E-mail: wzc.4884@163.com;oygp710@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李文
陈洁
胡伟男
漆亚云
付毅红
刘佳敏
王贞超
欧阳贵平

引用本文:

李文,陈洁,胡伟男,漆亚云,付毅红,刘佳敏,王贞超,欧阳贵平. EGFR耐药突变及其小分子抑制剂研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 97-104.

LI Wen,CHEN Jie,HU Wei-nan,QI Ya-yun,FU Yi-hong,LIU Jia-min,WANG Zhen-chao,OUYANG Gui-ping. Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors. China Biotechnology, 2019, 39(10): 97-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191012        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I10/97

图1  EGFR的外显子结构和酪氨酸激酶结构域内的突变[22]
图2  吉非替尼结构与EGFR-吉非替尼复合晶体结构[26]
序号 小分子抑制剂 英文名称 研发公司或研究人员 作用EGFR类型 研究状况
第一代 吉非替尼 Gefitinib 阿斯利康 EGFR野生型 已上市
第一代 厄洛替尼 Erlotinib Roche、OSI和Genentech EGFR L858R 突变 已上市
第一代 埃克替尼 Lcotinib 贝达药业 EGFR L858R 突变 已上市
第二代 阿法替尼 Afatinib Boehringer和Ingelheim EGFR L858R/T790M 突变 已上市
第三代 奥希替尼 AZD9291 阿斯利康 EGFR野生型、EGFR T790M 突变型 已上市
第三代 诺司替尼 Rociletinib
(CO-1686)
Clovis EGFR L858R/T790M 突变型和EGFR野生型 Ⅱ/Ⅲ期临床研究(2016年4月被FDA拒绝上市后停止研究)
第三代 HM61713 HM61713 韩美药业 EGFR L858R/T790M 突变型和EGFR野生型 已上市
第三代 WZ4002 WZ4002 Dana-Farber癌症研究院和Gray’s实验室 EGFR L858R/T790M 突变型和EGFR野生型 至今并没有进入临床试验阶段
第三代 艾维替尼 AC0010 杭州艾森 EGFR L858R/T790M 突变型和EGFR野生型 已上市
第三代 ASP8273 ASP8273 Astellas 19位外显子缺失型、EGFR L858R/T790M 突变型 Ⅱ/Ⅲ期临床研究
第三代 EGF816 EGF816 诺华 19位外显子缺失型、EGFR L858R/T790M 突变型 Ⅱ期临床试验
第四代 EAI001 EAI001 Jia等 EGFR L858R/T790M/C797S突变型 临床前研究
第四代 EAI045 EAI045 Jia等 EGFR L858R/T790M/C797S突变型 临床前研究
表1  EGFR小分子抑制剂研究近况
图3  厄洛替尼结构与EGFR-厄洛替尼复合晶体结构[27]
图4  阿法替尼结构与EGFR-阿法替尼复合晶体结构
图5  奥希替尼结构与EGFR-奥希替尼复合晶体结构[32]
图6  WZ4002结构与EGFR-WZ4002复合晶体结构[34]
图7  艾维替尼结构与EGFR-艾维替尼复合晶体结构[35]
图8  EAI045结构与EGFR-EAI045复合晶体结构[36]
[1] Parkin D M, Bray F, Ferlay J , et al. Global cancer statistics. Ca Cancer J Clin, 2011,61(2):69-90.
doi: 10.3322/caac.21262 pmid: 25651787
[2] Herbst R S, Heymach J V, Lippman S M . Lung cancer. N Engl J Med, 2008,359(13):1367-1380.
[3] De Gunst M M, Gallegos-Ruiz M I, Giaccone G , et al. Functional analysis of cancer-associated EGFR mutants using a cellular assay with YFP-tagged EGFR intracellular domain. Molecular Cancer, 2007,6(1):56.
[4] Kris M G, Natale R B, Herbst R S , et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA, 2003,290(16):2149-2158.
[5] Bishayee S . Role of conformational alteration in the epidermal growth factor receptor function. Biochemical Pharmacology, 2000,60(8):1217-1223.
[6] Hunter T . Growth factors:the epidermal growth factor receptor gene and its product. Nature, 1984,311(5985):414-416.
[7] Ogiso H, Ishitani R, Nureki O , et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 2002,110(6):775-787.
[8] Schlessinger J . Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell, 2002,110(6):669-672.
[9] Shan Y, Eastwood M P, Zhang X , et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell, 2012,149(4):860-870.
doi: 10.1016/j.cell.2012.02.063
[10] Downward J, Yarden Y, Mayes E , et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature, 1984,307(5951):521-527.
[11] Lemmon M A, Schlessinger J, Ferguson K M . The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harbor Perspectives in Biology, 2014,6(4):a020768.
[12] Papakyriakou A, Vourloumis D, Tzortzatou-Stathopoulou F , et al. Conformational dynamics of the EGFR kinase domain reveals structural features involved in activation. Proteins: Structure, Function, and Bioinformatics, 2009,76(2):375-386.
[13] Garrett T P J, McKern N M, Lou M , et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell, 2002,110(6):763-773.
[14] Holbro T, Hynes N E, Civenni G , et al. The ErbB receptors and their role in cancer progression. Experimental Cell Research, 2003,284(1):0-110.
[15] Sinclair J K L, Denton E V, Schepartz A . Inhibiting epidermal growth factor receptor at a distance. Journal of the American Chemical Society, 2014,136(32):11232-11235.
doi: 10.1021/ja504076t
[16] Kennedy E J, Kannan N . Dialing in EGFR signaling. Chemistry & Biology, 2015,22(6):687-688.
[17] Eck M J, Hahn W C . EGFR in limbo. Cell, 2012,149(4):735-737.
doi: 10.1016/j.cell.2012.04.015
[18] Normanno N, De Luca A, Bianco C , et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006,366(1):2-16.
[19] Wu Y L . EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? Trends in Pharmacological Sciences, 2016,37(11):887-903.
[20] 杨雅琼, 李宗海 . 以EGFR为靶点的肿瘤分子靶向药物研究进展. 中国生物工程杂志, 2012,32(5):91-96.
Yang Y Q, Li Z H . Recent development of molecular targeted cancer drugs targeted EGFR. China Biotechnology, 2012,32(5):91-96.
[21] Wang S, Song Y, Liu D . EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Letters, 2017,385(1):51-54.
[22] Yasuda H, Kobayashi S, Costa D B . EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. The Lancet Oncology, 2012,13(1):23-31.
[23] Helena A Y, Arcila M E, Rekhtman N , et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clinical Cancer Research, 2013,19(8):2240-2247.
doi: 10.1158/1078-0432.CCR-12-2246
[24] Sequist L V, Waltman B A, Dias-Santagata D , et al.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors.Science Translational Medicine,2011, 3(75): 75ra26.
[25] Yun C H, Mengwasser K E, Toms A V , et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences, 2008,105(6):2070-2075.
[26] Yun C H, Boggon T J, Li Y , et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 2007,11(3):217-227.
doi: 10.1016/j.ccr.2006.12.017
[27] Stamos J, Sliwkowski M X, Eigenbrot C . Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. Journal of Biological Chemistry, 2002,277(48):46265-46272.
[28] Solca F, Dahl G, Zoephel A , et al. Target binding properties and cellular activity of afatinib(BIBW 2992), an irreversible ErbB family blocker. Journal of Pharmacology and Experimental Therapeutics, 2012,343(2):342-350.
doi: 10.1124/jpet.112.197756
[29] Rewcastle G W, Denny W A, Bridges A J , et al. Tyrosine kinase inhibitors. 5. synthesis and structure-activity relationships for 4-[(phenylmethyl) amino]-and 4-(phenylamino) quinazolines as potent adenosine 5'-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor. Journal of Medicinal Chemistry, 1995,38(18):3482-3487.
[30] Gaul M D, Guo Y, Affleck K , et al. Discovery and biological evaluation of potent dual ErbB-2/EGFR tyrosine kinase inhibitors: 6-thiazolylquinazolines. Bioorganic & Medicinal Chemistry Ietters, 2003,13(4):637-640.
[31] Cross D A E, Ashton S E, Ghiorghiu S , et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discovery, 2014,4(9):1046-1061.
doi: 10.1158/2159-8290.CD-14-0337
[32] Yosaatmadja Y, Silva S, Dickson J M , et al. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed. Journal of Structural Biology, 2015,192(3):539-544.
[33] Niessen S, Dix M M, Barbas S , et al. Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell Chemical Biology, 2017,24(11):1388-1400.
[34] Song Z, Ge Y, Wang C , et al. Challenges and perspectives on the development of small-molecule EGFR inhibitors against T790M-mediated resistance in non-small-cell lung cancer: miniperspective. Journal of Medicinal Chemistry, 2016,59(14):6580-6594.
[35] Xu X, Mao L, Xu W , et al. AC0010, an irreversible EGFR inhibitor selectively targeting mutated EGFR and overcoming T790M-induced resistance in animal models and lung cancer patients. Molecular Cancer Therapeutics, 2016,15(11):2586-2597.
[36] Zhao P, Yao M Y, Zhu S J , et al. Crystal structure of EGFR T790M/C797S/V948R in complex with EAI045. Biochemical and Biophysical Research Communications, 2018,502(3):332-337.
[37] Singh M, Jadhav H R . Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. Drug Discovery Today, 2018,23(3):745-753.
[38] Jia Y, Yun C H, Park E , et al. Overcoming EGFR(T790M)and EGFR(C797S)resistance with mutant-selective allosteric inhibitors. Nature, 2016,534(7605):129-132.
[1] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[2] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[3] 赵建民,张思源. 耐药菌感染的噬菌体治疗专利技术[J]. 中国生物工程杂志, 2020, 40(10): 104-111.
[4] 张潘红,李莲莲,张秀美,崔家骏,姜银杰. microRNA对肺癌化疗耐药性影响的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 79-84.
[5] 张晓勇,罗前程. 应用LNA-PCR法检测乙型肝炎病毒阿德福韦酯耐药位点基因突变 *[J]. 中国生物工程杂志, 2018, 38(9): 48-54.
[6] 叶中杨,邱怀雨,祝丙华,李泽,祝业,王立贵. sRNA调控细菌耐药相关基因表达研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 89-93.
[7] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[8] 曾家伟,侯国锋,郑继平,杨诺,曾纪峰,郭桂英. CRISPR/Cas系统作为抗菌药的现状及展望 *[J]. 中国生物工程杂志, 2018, 38(11): 59-65.
[9] 戈家傲,刘畅,龚建刚,刘艳琴. 抗菌环肽的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 76-83.
[10] 王志明, 高健, 李耿. 治疗性单克隆抗体药物的现状及发展趋势[J]. 中国生物工程杂志, 2013, 33(6): 117-124.
[11] 吴俊, 严新, 邵荣, 段菁华. 阿霉素-姜黄素聚氰基丙烯酸正丁酯复方纳米粒的研制及逆转MCF-7/ADR细胞多药耐药的研究[J]. 中国生物工程杂志, 2013, 33(5): 35-43.
[12] 姚雪, 刘琪琦, 赵青, 陈苏红. 应用可视化基因芯片技术检测幽门螺杆菌感染个体化药物治疗相关基因[J]. 中国生物工程杂志, 2013, 33(4): 92-100.
[13] 成志勇, 梁文同, 王素云, 颜晓燕, 李华, 王宝艳, 田赫, 魏玉涛, 芦希. PTEN/NF-κB/Caspase信号通路对K562/ADM细胞阿霉素耐药逆转机制的研究[J]. 中国生物工程杂志, 2013, 33(3): 54-60.
[14] 师锐赞, 胡晓玲, 范彦英. shRNA抑制c-fos表达对P-gp介导的乳腺癌多药耐药的影响[J]. 中国生物工程杂志, 2012, 32(12): 8-12.
[15] 姜焕焕, 安小平, 米志强, 童贻刚. 噬菌体治疗细菌性感染的进展[J]. 中国生物工程杂志, 2010, 30(12): 116-122.