Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (9): 92-100    DOI: 10.13523/j.cb.2106041
综述     
孢粉素的物理化学性质和生物医学应用研究进展*
孙莉萍1,**(),徐宛1,李孟伟1,曾茹2,翁建1
1 厦门大学材料学院生物材料系 厦门 361005
2 厦门大学附属第一医院肿瘤内科 厦门 361003
Advances of the Physiochemical Properties of Sporopollenin and Its Biomedical Applications
SUN Li-ping1,**(),XU Wan1,LI Meng-wei1,ZENG Ru2,WENG Jian1
1 Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
2 Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
 全文: PDF(1926 KB)   HTML
摘要:

孢粉素是类聚乙烯醇链通过酯键和缩醛高度交联的天然生物高分子,构成花粉和孢子的外壁,能够抵抗物理、化学、生物腐蚀,堪称自然界最坚固的有机物,被誉为植物界的金刚石。孢粉素微囊(SEC)自然界来源丰富、生物相容性好、无免疫原性,表面含有丰富的羧基、羟基和酚基,能够功能化或者与其他纳米材料构建复合材料;其表面丰富的纳米孔道增加了材料的比表面积,有利于捕获癌细胞或目标生物分子。SEC独特的性质使其在药物载体、口服疫苗载体、影像诊断、生物传感、细胞生长支架、微反应器、微型机器人等方面得到广泛的应用。阐述了孢粉素的结构、物理化学性质、制备方法和功能化方面的研究进展, 探讨了孢粉素的应用前景、存在的问题以及未来的发展方向。

关键词: 孢粉素花粉孢子微囊药物载体    
Abstract:

Sporopollenin (SP) is a highly cross-linked natural biopolymer composed of polyvinyl alcohol-like unit crosslinked through ester and acetal linkage. SP forms the outer wall of pollen and spore and can resist physical, chemical and biological corrosion. It is the most robust organic compound in nature and is known as the diamond of plant kingdom. Sporopollenin exine capsules (SEC) are abundant in nature. They have good biocompatibility and no immunity. The rich carboxyl, hydroxyl and phenolic groups make SEC easy to be functionalized or complexed with nanomaterials. The plentiful nanochannels on SEC increases their specific surface area, supporting capture of cancer cell and biomolecules. The unique properties of SEC lead to their wide applications in drug delivery carriers, oral vaccine carriers, medical imaging, biosensing, cell growth scaffold, microreactor, micro robot, etc. In this review, the physicochemical properties, preparation methods and functionalization of SP as well as the research progress of SEC are discussed. The application prospect, existing problems and future development direction of SEC are summarized.

Key words: Sporopollenin    Pollen    Spore    Microcapsule    Drug carrier
收稿日期: 2021-06-25 出版日期: 2021-09-30
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81872415)
通讯作者: 孙莉萍     E-mail: sunliping@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙莉萍
徐宛
李孟伟
曾茹
翁建

引用本文:

孙莉萍,徐宛,李孟伟,曾茹,翁建. 孢粉素的物理化学性质和生物医学应用研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 92-100.

SUN Li-ping,XU Wan,LI Meng-wei,ZENG Ru,WENG Jian. Advances of the Physiochemical Properties of Sporopollenin and Its Biomedical Applications. China Biotechnology, 2021, 41(9): 92-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106041        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I9/92

图1  花粉切面的结构
图2  孢粉素的表面形态和化学结构
图3  孢粉素微囊的制备流程
图4  孢粉素微囊在生物医学中的应用
图5  用孢粉素微囊生物传感器检测PSA
图6  孢粉素微囊捕获癌细胞
[1] Park J H, Seo J, Jackman J A, et al. Inflated sporopollenin exine capsules obtained from thin-walled pollen. Scientific Reports, 2016, 6:28017.
doi: 10.1038/srep28017
[2] Krienitz L, Takeda H, Hepperle D. Ultrastructure, cell wall composition, and phylogenetic position of Pseudodictyosphaerium jurisii (Chlorococcales, Chlorophyta) including a comparison with other picoplanktonic green algae. Phycologia, 1999, 38(2):100-107.
doi: 10.2216/i0031-8884-38-2-100.1
[3] Mundargi R C, Potroz M G, Park J H, et al. Eco-friendly streamlined process for sporopollenin exine capsule extraction. Scientific Reports, 2016, 6:19960.
doi: 10.1038/srep19960
[4] Halbritter H, Ulrich S, Grímsson F, et al. Pollen morphology and ultrastructure. Illustrated pollen terminology. Cham: Springer International Publishing, 2018: 37-65.
[5] Khare A R, Vasisht N. Nanoencapsulation in the food industry. Microencapsulation in the food industry. Amsterdam: Elsevier, 2014: 151-155.
[6] Brooks J, Shaw G. Sporopollenin: a review of its chemistry, palaeochemistry and geochemistry. Grana, 1978, 17(2):91-97.
doi: 10.1080/00173137809428858
[7] Li F S, Phyo P, Jacobowitz J, et al. The molecular structure of plant sporopollenin. Nature Plants, 2019, 5(1):41-46.
doi: 10.1038/s41477-018-0330-7
[8] Sylvain B. Physical and chemical properties of sporopollenin exine particles. Hull: University of Hull, 2008.
[9] Jardine P E, Fraser W T, Lomax B H, et al. The impact of oxidation on spore and pollen chemistry. Journal of Micropalaeontology, 2015, 34(2):139-149.
doi: 10.1144/jmpaleo2014-022
[10] Southworth D. Solubility of pollen exines. American Journal of Botany, 1974, 61(1):36-44.
doi: 10.1002/j.1537-2197.1974.tb06025.x
[11] Bernard S, Benzerara K, Beyssac O, et al. Evolution of the macromolecular structure of sporopollenin during thermal degradation. Heliyon, 2015, 1(2):e00034.
doi: 10.1016/j.heliyon.2015.e00034
[12] Montgomery W, Potiszil C, Watson J S, et al. Sporopollenin, a natural copolymer, is robust under high hydrostatic pressure. Macromolecular Chemistry and Physics, 2016, 217(22):2494-2500.
doi: 10.1002/macp.v217.22
[13] Rowley J, Skvarla J. The elasticity of the exine. Grana, 2000, 39(1):1-7.
doi: 10.1080/00173130150503759
[14] Potroz M G, Mundargi R C, Gillissen J J, et al. Drug delivery: plant-based hollow microcapsules for oral delivery applications: toward optimized loading and controlled release. Advanced Functional Materials, 2017, 27(31):1700270. DOI: 10.1002/adfm.201770184.
doi: 10.1002/adfm.201770184
[15] MacKenzie G, Boa A N, Diego-Taboada A, et al. Sporopollenin, the least known yet toughest natural biopolymer. Frontiers in Materials, 2015, 2:1-5.
[16] Diego-Taboada A, Beckett S, Atkin S, et al. Hollow pollen shells to enhance drug delivery. Pharmaceutics, 2014, 6(1):80-96.
doi: 10.3390/pharmaceutics6010080 pmid: 24638098
[17] Luo S X, Li Y Q, Chen S, et al. Gelechiidae moths are capable of chemically dissolving the pollen of their host plants: first documented sporopollenin breakdown by an animal. PLoS One, 2011, 6(4):e19219.
doi: 10.1371/journal.pone.0019219
[18] Ahokas H. Evidence of a pollen esterase capable of hydrolyzing sporopollenin. Experientia, 1976, 32(2):175-177.
doi: 10.1007/BF01937750
[19] Prabhakar A K, Lai H Y, Potroz M G, et al. Chemical processing strategies to obtain sporopollenin exine capsules from multi-compartmental pine pollen. Journal of Industrial and Engineering Chemistry, 2017, 53:375-385.
doi: 10.1016/j.jiec.2017.05.009
[20] Tan E L, Potroz M G, Ferracci G, et al. Functionalized natural particles: light-induced surface modification of natural plant microparticles: toward colloidal science and cellular adhesion applications. Advanced Functional Materials, 2018, 28(18):1870120.
doi: 10.1002/adfm.v28.18
[21] Tan E L, Potroz M G, Ferracci G, et al. Hydrophobic to superhydrophilic tuning of multifunctional sporopollenin for microcapsule and bio-composite applications. Applied Materials Today, 2020, 18:100525.
doi: 10.1016/j.apmt.2019.100525
[22] Maric T, Nasir M Z M, Rosli N F, et al. Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier. Advanced Functional Materials, 2020, 30(19):2000112.
doi: 10.1002/adfm.v30.19
[23] Wang H, Potroz M G, Jackman J A, et al. Micromotors: bioinspired spiky micromotors based on sporopollenin exine capsules. Advanced Functional Materials, 2017, 27(32):1702338. DOI: 10.1002/adfm.201770185.
doi: 10.1002/adfm.201770185
[24] Wang Y T, Len T, Huang Y K, et al. Sulfonated sporopollenin as an efficient and recyclable heterogeneous catalyst for dehydration of d-xylose and xylan into furfural. ACS Sustainable Chemistry & Engineering, 2017, 5(1):392-398.
[25] Wang L L, Ng W, Jackman J A, et al. Biosensors: graphene-functionalized natural microcapsules: modular building blocks for ultrahigh sensitivity bioelectronic platforms. Advanced Functional Materials, 2016, 26(13):2220.
doi: 10.1002/adfm.201670083
[26] Wang L L, Jackman J A, Tan E L, et al. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy, 2017, 36:38-45.
doi: 10.1016/j.nanoen.2017.04.015
[27] 王开发, 花粉的功能与应用. 北京: 化学工业出版社, 2004.
Wang K F. The function and application of pollen. Beijing: Chemical Industry Press, 2004.
[28] Barrier S, Diego-Taboada A, Thomasson M J, et al. Viability of plant spore exine capsules for microencapsulation. J Mater Chem, 2011, 21(4):975-981.
[29] Wakil A, MacKenzie G, Diego-Taboada A, et al. Enhanced bioavailability of eicosapentaenoic acid from fish oil after encapsulation within plant spore exines as microcapsules. Lipids, 2010, 45(7):645-649.
doi: 10.1007/s11745-010-3427-y
[30] Akyuz L, Sargin I, Kaya M, et al. A new pollen-derived microcarrier for pantoprazole delivery. Materials Science & Engineering C, Materials for Biological Applications, 2017, 71:937-942.
doi: 10.1016/j.msec.2016.11.009
[31] Diego-Taboada A, Maillet L, Banoub J H, et al. Protein free microcapsules obtained from plant spores as a model for drug delivery: ibuprofen encapsulation, release and taste masking. J Mater Chem B, 2013, 1(5):707-713.
doi: 10.1039/c2tb00228k pmid: 32260776
[32] Mundargi R C, Tan E L, Seo J, et al. Encapsulation and controlled release formulations of 5-fluorouracil from natural Lycopodium clavatum spores. Journal of Industrial and Engineering Chemistry, 2016, 36:102-108.
doi: 10.1016/j.jiec.2016.01.022
[33] Uddin M J, Gill H S. From allergen to oral vaccine carrier: a new face of ragweed pollen. International Journal of Pharmaceutics, 2018, 545(1-2):286-294.
doi: 10.1016/j.ijpharm.2018.05.003
[34] Mundargi R C, Potroz M G, Park S, et al. Drug delivery: Lycopodium spores: a naturally manufactured, superrobust biomaterial for drug delivery (adv. funct. mater. 4/2016). Advanced Functional Materials, 2016, 26(4):632.
doi: 10.1002/adfm.201670027
[35] Hamad S A, Dyab A F K, Stoyanov S D, et al. Encapsulation of living cells into sporopollenin microcapsules. Journal of Materials Chemistry, 2011, 21(44):18018.
doi: 10.1039/c1jm13719k
[36] Sudareva N, Suvorova O, Saprykina N, et al. Two-level delivery systems for oral administration of peptides and proteins based on spore capsules of Lycopodium clavatum. Journal of Materials Chemistry B, 2017, 5(37):7711-7720.
doi: 10.1039/c7tb01681f pmid: 32264372
[37] Lorch M, Thomasson M J, Diego-Taboada A, et al. MRI contrast agent delivery using spore capsules: controlled release in blood plasma. Chemical Communications (Cambridge, England), 2009(42):6442-6444.
[38] Wang L L, Jackman J A, Ng W B, et al. Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Advanced Functional Materials, 2016, 26(47):8623-8630.
doi: 10.1002/adfm.v26.47
[39] Zhang Y B, Zhang L, Yang L D, et al. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Science Advances, 2019, 5(1): eaau9650. DOI: 10.1126/sciadv.aau9650.
doi: 10.1126/sciadv.aau9650
[40] Jiang W N, Han L L, Yang L W, et al. Natural fish trap-like nanocage for label-free capture of circulating tumor cells. Advanced Science (Weinheim, Baden Wurttemberg, Germany), 2020, 7(22):2002259.
[41] Ahmad N F, Kamboh M A, Nodeh H R, et al. Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution. Environmental Science and Pollution Research, 2017, 24(27):21846-21858.
doi: 10.1007/s11356-017-9820-9
[42] Yaacob S F F S, Razak N S A, Aun T T, et al. Synthesis and characterizations of magnetic bio-material sporopollenin for the removal of oil from aqueous environment. Industrial Crops and Products, 2018, 124:442-448.
doi: 10.1016/j.indcrop.2018.08.024
[43] Fan T F, Potroz M G, Tan E L, et al. Species-specific biodegradation of sporopollenin-based microcapsules. Scientific Reports, 2019, 9(1):9626.
doi: 10.1038/s41598-019-46131-w
[44] Atwe S U, Ma Y Z, Gill H S. Pollen grains for oral vaccination. Journal of Controlled Release, 2014, 194:45-52.
doi: 10.1016/j.jconrel.2014.08.010
[1] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[2] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[3] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[4] 金晓霞, 高亚, 于丽杰. IL-4基因大白菜后代的分子检测及遗传分析[J]. 中国生物工程杂志, 2013, 33(6): 131-137.
[5] 陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.
[6] 武为平, 陈捷, 李雅乾, 陈立杰, 段玉玺. 响应面法优化棘孢木霉产厚垣孢子发酵工艺[J]. 中国生物工程杂志, 2013, 33(12): 97-104.
[7] 黄凯宗 王文研 张光亚. 类弹性蛋白多肽及其在生物医学材料的应用[J]. 中国生物工程杂志, 2010, 30(05): 128-132.
[8] 边蕾,石屹峰. 蛋白质药物长效化技术的现状和进展[J]. 中国生物工程杂志, 2009, 29(02): 114-118.
[9] 龚平, 吴锦霞, 谭天伟. 免疫球蛋白缓释微囊的制备、结构表征与性能研究[J]. 中国生物工程杂志, 2005, 25(12): 15-19.
[10] 杨谷良, 谭晓风, 乌云塔娜. 配子体自交不亲和植物花粉S基因研究进展[J]. 中国生物工程杂志, 2005, 25(10): 68-71,77.
[11] 赵凌, 王才林, 宗寿余, 黄骏麒, 龚蓁蓁. 花粉管介导的转bar基因水稻植株的获得及其遗传[J]. 中国生物工程杂志, 2003, 23(8): 92-95.
[12] 李颖, 段德义, 杨慧. 抑制移植免疫排斥反应的研究进展[J]. 中国生物工程杂志, 2003, 23(10): 28-31.
[13] 华志明, 陈睦传, 沈明山. 从柱头到胚囊——花粉管发育研究进展[J]. 中国生物工程杂志, 1998, 18(6): 31-34.
[14] 李胜国, 刘玉乐, 田波. 植物花粉发育的分子生物学研究进展[J]. 中国生物工程杂志, 1997, 17(2): 16-21,58.
[15] 祝水金, 季道藩. 棉花抗虫基因工程研究进展[J]. 中国生物工程杂志, 1996, 16(1): 36-39.