Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (8): 24-32    DOI: 10.13523/j.cb.2005006
技术与方法     
基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *
邓通,周海胜,吴坚平,杨立荣()
浙江大学化学工程与生物工程学院生物工程研究所 杭州 310027
Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy
DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong()
College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China
 全文: PDF(1058 KB)   HTML
摘要:

目的:生物催化的氧化还原反应广泛应用于手性化合物的制备,其中很多反应涉及辅酶NADPH的原位再生。以异丙醇为辅助底物,利用醇脱氢酶再生NADPH,具有比酶活高、副产物丙酮易于分离等优势,受到越来越多的关注。选择极具应用潜力的来源于Clostridium beijerinckii的醇脱氢酶CbADH作为研究对象,针对其在大肠杆菌中的可溶性表达差、酶活低的瓶颈问题开展研究。方法: 首先通过引入诱导型质粒pGro7表达分子伴侣GroES-GroEL,将pET-28a(+)质粒表达CbADH的可溶性提高了3.57倍,酶活达到出发菌株的4.83倍。其次,考察了另外三种不同的分子伴侣表达策略:pET-28a(+)单质粒共表达、基因组强化表达GroES-GroEL和组成型改造pGro7/GroES-GroEL和pET-28a(+)/CbADH双质粒共表达。结果: 组成型改造pGro7和pET-28a(+)双质粒共表达策略的效果最优,其CbADH的可溶性表达提高了8.07倍,酶活达到了21.79U/mg DCW,是出发菌株的9.43倍。结论: 为CbADH的工业应用奠定了良好的基础,也为外源蛋白的可溶性表达提供了参考。

关键词: 醇脱氢酶异源可溶性表达分子伴侣NADPH    
Abstract:

Objectives: Many of biocatalytic redox reactions which are widely used in the production of chiral chemicals involve the regeneration of the coenzyme NADPH in situ. Alcohol dehydrogenases that regenerate NADPH with isopropanol as substrate have the advantages of high specific activity and easy separation of byproduct acetone, attracting more and more attention. Therefore, an alcohol dehydrogenase from Clostridium beijerinckii, namely CbADH, was chosen as the research object for its more considerable specific activity and the most applicable potentiality within present literatures. To solve the problem of poor soluble expression of CbADH in E. coli genetically engineered strains and the consequent enzyme activity as low as 2.31 U / mg DCW, the following studies were carried out. Methods: Firstly, different chaperone proteins were expressed by inducible plasmids to increase the soluble expression level of CbADH, and the results showed that molecular chaperone GroES-GroEL significantly improved the soluble expression of CbADH by 3.57 times more than the original strain, with enzyme activity of 11.18 U/mg DCW which is 4.83 times more than the original strain. Secondly, three other different GroES-GroEL expression strategies were examined: pET-28a(+) single plasmid co-expression, genomic enhancing expression of chaperone, and constitutive-pGro7/pET-28a(+) dual plasmid co-expression. Results: The results indicated that the constitutive-pGro7/pET-28a(+) dual plasmid co-expression strategy had the best effect which improved the soluble expression of CbADH by 8.07 times more than the oringinal strain, with a CbADH activity of 21.79 U/mg DCW, which was 9.43 times higher than the oringinal strain. Conclusions: This study not only lays the foundation for the industrial application of CbADH but also provides a reference for heterologous soluble protein expression.

Key words: Alcohol dehydrogenase    Soluble heteroexpression    Chaperone    NADPH
收稿日期: 2020-05-06 出版日期: 2020-09-10
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(21476199)
通讯作者: 杨立荣     E-mail: lryang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓通
周海胜
吴坚平
杨立荣

引用本文:

邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.

DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy. China Biotechnology, 2020, 40(8): 24-32.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2005006        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I8/24

分子伴侣质粒 伴侣蛋白 启动子 诱导剂 抗性
pG-KJE8 DnaK-DnaJ-GrpE-GroES-GroEL araB Pzt-1 0.5g/ml L-Arabinose+5ng/ml Tetracyclin Cm
pGro7 GroES-GroEL araB 0.5g/ml L-Arabinose Cm
pKJE7 DnaK-DnaJ-GrpE araB 0.5g/ml L-Arabinose Cm
pG-Tf2 GroES-GroEL-Tf Pzt-1 5ng/ml Tetracyclin Cm
pTf16 Tf araB 0.5g/ml L-Arabinose Cm
表1  分子伴侣质粒信息
图1  共表达质粒的表达区域结构示意图
启动子名称 序列 相对强度
J23119 ttgacagctagctcagtcctaggtataatgctagc n/a
J23100 ttgacggctagctcagtcctaggtacagtgctagc 1
J23102 ttgacagctagctcagtcctaggtactgtgctagc 0.86
J23104 ttgacagctagctcagtcctaggtattgtgctagc 0.72
J23108 ctgacagctagctcagtcctaggtataatgctagc 0.51
J23110 tttacggctagctcagtcctaggtacaatgctagc 0.33
J23114 tttatggctagctcagtcctaggtacaatgctagc 0.10
表2  组成型启动子信息①(① 组成型启动子具体信息来源于http://parts.igem.org/Promoters/Catalog/Anderson)
图2  CRISPR基因组编辑示意图
图3  分子伴侣共表达菌株的SDS-PAGE分析
采用策略 菌株名称 OD600 酶活(U/mg DCW)
出发菌株 CbADH-WT 5.91±0.34 2.31±0.3
分子伴侣共表达 A 6.24±0.38 11.18±0.96
B 5.27±0.2 3.61±0.21
C 5.17±0.31 3.98±0.14
D 7.19±0.24 4.17±0.35
E 5.97±0.23 2.88±0.09
单质粒共表达 F 5.4±0.24 10±0.35
G 5.23±0.32 7.89±0.46
H 4.88±0.28 8.02±0.43
I 5.09±0.19 12.99±0.89
基因组强化表达 J 5.23±0.35 9.13±0.31
K 5.31±0.37 7.26±0.18
L 5.28±0.25 2.3±0.24
组成型双质粒共表达 M 5.08±0.41 21.79±1.1
N 5.44±0.24 17.74±0.92
O 5.43±0.32 16.8±0.42
P 5.56±0.21 15.57±0.52
Q 5.79±0.13 15.08±0.46
R 5.55±0.32 14.82±0.32
S 5.32±0.26 12.35±0.67
表3  不同策略的CbADH发酵液酶活测定结果
图4  pET单质粒共表达菌株的SDS-PAGE分析
图5  基因组强化表达GroES-GroEL的SDS-PAGE分析
图6  组成型改造pGro7/GroES-GroEL和pET-28a(+)/CbADH双质粒共表达菌株SDS-PAGE分析
图7  GroEL与CbADH表达量比例同CbADH酶活的关系
[1] Fischer T, Pietruszka J. Key building blocks via enzyme-mediated synthesis. Topics in Current Chemistry, 2010,297:41-43.
[2] Yin X, Liu Y, Meng L, et al. Rational molecular engineering of glutamate dehydrogenases for enhancing asymmetric reductive amination of bulky α-keto acids. Advanced Synthesis & Catalysis, 2019,361(4):803-812.
[3] Van Der Donk W A, Zhao H. Recent developments in pyridine nucleotide regeneration. Current Opinion in Biotechnology, 2003,14(4):421-426.
doi: 10.1016/S0958-1669(03)00094-6
[4] Kataoka M, Yamamoto K, Kawabata H, et al. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 1999,51(4):486-490.
doi: 10.1007/s002530051421 pmid: 10341431
[5] Gallegos M T, Marques S, Ramos J L. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a sigma-70-dependent promoter or from sigma-70- and sigma-54-dependent tandem promoters according to the compound used for growth. Journal of Bacteriology, 1996,178(7-8):2356.
doi: 10.1128/JB.178.8.2356-2361.1996
[6] Ying X, Ma K. Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon thermococcus guaymasensis. Journal of Bacteriology, 2011,193(12):3009-3019.
doi: 10.1128/JB.01433-10
[7] Widdel F, Wolfe R S. Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Archives of Microbiology, 1989,152(4):322-328.
doi: 10.1007/BF00425168
[8] Hoelsch K, Sührer I, Heusel M. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Applied Microbiology & Biotechnology, 2013,97(6):2473-2481.
doi: 10.1007/s00253-012-4142-9 pmid: 22588502
[9] Kumar A, Shen P S, Descoteaux S, et al. Cloning and expression of an NADP +-dependent alcohol dehydrogenase gene of entamoeba histolytica . Proceedings of the National Academy of Sciences of the United States of America, 1992,89(21):10188-10192.
[10] Burdette D, Zeikus J G. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2° Adh) as a bifunctional alcohol dehydrogenase-acetyl-CoA reductive thioesterase. Biochemical Journal, 1994,302(1):163-170.
doi: 10.1042/bj3020163
[11] Peretz M, Bogin O, Tel-Or S, et al. Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenases from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe, 1997,3(4):259-270.
doi: 10.1006/anae.1997.0083 pmid: 16887600
[12] Korkhin Y, Kalb A J, Peretz M, et al. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. Journal of Molecular Biology, 1998,278(5):967-981.
doi: 10.1006/jmbi.1998.1750 pmid: 9836873
[13] Bogin O, Levin I, Hacham Y, et al. Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii: contribution of salt bridging. Protein Science, 2002,11(11):2561-2574.
doi: 10.1110/ps.0222102 pmid: 12381840
[14] Bogin O, Peretz M, Burstein Y. Probing structural elements of thermal stability in bacterial oligomeric alcohol dehydrogenases. I. construction and characterization of chimeras consisting of secondary ADHs from Thermoanaerobacter brockii and Clostridium beijerinckii. Letters in Peptide Science, 1998,5(5-6):399-408.
[15] Goihberg E, Dym O, Tel-Or S, et al. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Protns Structure Function and Bioinformatics, 2006,66(1):196-204.
[16] Ismaiel A A, Zhu C X, Colby G D, et al. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. Journal of Bacteriology, 1993,175(16):5097-5105.
doi: 10.1128/jb.175.16.5097-5105.1993 pmid: 8349550
[17] Jiang Y, Chen B, Duan C, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied & Environmental Microbiology, 2015,81(7):2506-2514.
doi: 10.1128/AEM.04023-14 pmid: 25636838
[18] Kaiser C M, Chang H C, Agashe V R, et al. Real-time observation of trigger factor function on translating ribosomes. Nature, 2006,444(7118):455-460.
doi: 10.1038/nature05225 pmid: 17051157
[19] Mayer M P, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular & Molecular Life Sciences, 2005,62(6):670-684.
pmid: 15770419
[20] Hartl F U, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 2002,295(5561):1852-1858.
doi: 10.1126/science.1068408 pmid: 11884745
[21] Tang Y C, Chang H C, Roeben A, et al. Structural features of the GroEL-GroES Nano-Cage required for rapid folding of encapsulated protein. Cell, 2006,125(5):903-914.
doi: 10.1016/j.cell.2006.04.027 pmid: 16751100
[22] Clare D K, Bakkes P J, Van Heerikhuizen H, et al. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature, 2009,457(7225):107-110.
doi: 10.1038/nature07479 pmid: 19122642
[1] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[2] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[3] 汪企再,王鸿超,陈海琴,赵建新,张灏,陈卫,陈永泉. 过表达亚甲基四氢叶酸脱氢酶对高山被孢霉脂质合成的影响 *[J]. 中国生物工程杂志, 2018, 38(9): 12-18.
[4] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[5] 冯雪, 高香, 牛纯青, 刘堰. 密码子优化后的αB-晶状体蛋白基因毕赤酵母重组质粒的构建及表达的初步研究[J]. 中国生物工程杂志, 2017, 37(7): 42-47.
[6] 夏惠, 刘磊, 王秀, 沈妍秋, 郭雨伦, 梁东. 苹果6-磷酸山梨醇脱氢酶基因启动子逆境诱导表达特性研究[J]. 中国生物工程杂志, 2017, 37(6): 50-55.
[7] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.
[8] 武雪龙, 杨晓慧, 汪俊卿, 王瑞明. 蜜蜂NADPH-细胞色素P450还原酶基因在大肠杆菌中的表达及酶学特性分析[J]. 中国生物工程杂志, 2016, 36(12): 28-35.
[9] 王鸿超, 张陈, 陈殿宁, 乔菊园, 陈海琴, 顾震南, 张灏, 陈卫, 陈永泉. 高山被孢霉亚甲基四氢叶酸脱氢酶的克隆、表达和功能鉴定[J]. 中国生物工程杂志, 2016, 36(11): 23-29.
[10] 郝文博, 姬芳玲, 王静云, 张悦, 王天琪, 车文实, 包永明. D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响[J]. 中国生物工程杂志, 2016, 36(1): 47-54.
[11] 李倩倩, 李中媛, 冯舵, 黄火清, 韩翠晓, 杨培龙, 姚斌, 高伟. 芽孢杆菌β-折叠桶植酸酶的原核可溶性表达优化及包涵体复性研究[J]. 中国生物工程杂志, 2012, 32(08): 49-55.
[12] 姜进举, 张宏宇, 任宝永, 施斐, 崔玉琳, 秦松. 产乙醇大肠杆菌的构建及其活性检测方法的改进[J]. 中国生物工程杂志, 2011, 31(8): 73-78.
[13] 李江姣, 朱武洋, 何英, 梁国栋. 辛德毕斯病毒E2包膜蛋白可溶性表达条件的优化[J]. 中国生物工程杂志, 2011, 31(02): 62-68.
[14] 戴小燕, 沈晓波, 朱宏阳, 徐虹. Gluconobacter oxydans NH-10中短链D-阿拉伯糖醇脱氢酶的研究[J]. 中国生物工程杂志, 2010, 30(11): 39-43.
[15] 沈晓波 齐向辉 朱宏阳 徐虹. Gluconobacter oxydans木糖醇脱氢酶基因的克隆表达及木糖醇的转化分析[J]. 中国生物工程杂志, 2009, 29(12): 54-59.