Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (7): 15-21    DOI: 10.13523/j.cb.2002034
研究报告     
TNF-α纳米抗体的筛选、表达及特异性检测 *
蔺士新1,刘东晨2,雷云2,熊盛2,谢秋玲1,**()
1 暨南大学生命科学技术学院 广州 510632
2 基因工程药物国家工程研究中心 广州 510632
Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody
LIN Shi-xin1,LIU Dong-chen2,LEI Yun2,XIONG Sheng2,XIE Qiu-ling1,**()
1 College of life science and technology, Jinan university, Guangzhou 510632, China
2 National Engineering Research Center of Genetic Medicine, Jinan university, Guangzhou 510632, China
 全文: PDF(1140 KB)   HTML
摘要:

目的:构建肿瘤坏死因子(tumor necrosis factor,TNF)纳米抗体的噬菌体文库,筛选并表达与TNF-α具有亲和特异性的纳米抗体。方法:(1)利用TNF-α免疫羊驼,提取外周血淋巴细胞总RNA,构建噬菌体文库;多次淘洗筛选到与TNF-α有亲和力的克隆。(2)通过ExPASy分析其分子量和亲疏水性等理化性质,并将筛选得到的VHH基因在大肠杆菌E.coli DH5α中表达。(3)表达的NbTNF-α蛋白质经过Ni金属螯合亲和层析纯化,采用酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)检测蛋白质的抗原特异性和亲和力。结果:(1)通过噬菌体文库的构建和淘洗,筛选到8个与TNF-α有亲和力的VHH基因片段。(2)通过软件预测,这8个NbTNF-α蛋白均为亲水性蛋白,其分子量为19.6~20.1kDa;在大肠杆菌中重组表达这8个抗体蛋白。(3)ELISA检测结果表明,有5株纳米抗体NbTNF-α-1、NbTNF-α-2、NbTNF-α-3、NbTNF-α-4和NbTNF-α-5能与TNF-α特异性结合。结论:成功筛选并表达了5株具有TNF-α特异性的纳米抗体,可能成为抗TNF-α的候选药物。

关键词: 纳米抗体肿瘤坏死因子噬菌体文库筛选    
Abstract:

Objective: To construct the phage library of anti-TNF-α (vascular endothelial growth factor) andto screen and express the nanobodies which have specificity and affinity with TNF-α. Methods: (1) The llama was immunized with TNF-α, and the total RNA of peripheral blood lymphocytes was extracted to construct a phage library, the clones having affinity with TNF-α were screened by multiple panning. (2) Then their molecular weight, pI and hydrophilicity were analyzed by ExPASy. And the VHH genes were cloned into the expression vector pNCS to construct the recombinant plasmids (pNCS-NbTNF-α) and to express these recombinant nanobodies (NbTNF-α) in E.coli DH5α. (3) The recombinant nanobodies were purified by Ni metal chelate affinity chromatography, followed by detection the specificity by enzyme linked immunosorbent assay (ELISA).Results: (1) Ten VHH gene fragments having affinity with TNF-α were obtained after phage library construction and panning. (2) Based on the bioinformatics analysis, it was found that eight nanobodies were hydrophilic proteins with molecular weights of 19.6-20.1kDa. All of NbTNF-α were expressed in E.coli DH5α in soluble form. (3) It was showed that five recombinant nanobodies, NbTNF-α-1, NbTNF-α-2, NbTNF-α-3, NbTNF-α-4 and NbTNF-α-5 could specifically bind to TNF-α. Conclusion: Eight nanobodies with specificity to TNF-α were screened and expressed in E.coli successfully, and five NbTNF-α showed good affinity with TNF-α, which could be possible candidates for anti-TNF-α drug.

Key words: Nanobody    Tumor necrosis factor    Phage library    Screening
收稿日期: 2020-02-22 出版日期: 2020-08-13
ZTFLH:  Q816  
基金资助: * 广东省省级科技计划资助项目(2015A020211016)
通讯作者: 谢秋玲     E-mail: txql@jnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蔺士新
刘东晨
雷云
熊盛
谢秋玲

引用本文:

蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.

LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody. China Biotechnology, 2020, 40(7): 15-21.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2002034        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I7/15

表1  引物列表
图1  羊驼免疫前后血清中TNF-α抗体滴度的检测
图2  重组质粒pComb-3X-VHH酶切鉴定
图3  噬菌体文库的淘洗
图4  TNF-α纳米抗体噬菌体文库的富集
图5  TNF-α纳米抗体文库筛选结果
纳米蛋白 MV(分子量) pI(等电点) 总亲水性平均
系数(GRAVY)
NbTNF-α-1 19 656.63 5.76 -0.641
NbTNF-α-2 19 694.67 5.57 -0.817
NbTNF-α-3 19 800.89 6.37 -0.332
NbTNF-α-4 19 992.05 5.94 -0.614
NbTNF-α-5 19 883.69 5.76 -0.857
NbTNF-α-6 20 116.12 5.73 -0.265
NbTNF-α-7 19 882.95 6.14 -0.703
NbTNF-α-8 20 106.03 5.85 -0.698
表2  NbTNF-α抗原蛋白的理化性质
图6  重组表达的NbTNF-α的SDS-PAGE及Western blot结果分析
图7  纯化后的NbTNF-α蛋白
图8  NbTNF-α蛋白的特异性
[1] Zelova H, Hosek J. TNF-alpha signalling and inflammation: interactions between old acquaintances. Inflammation Research, 2013,62(7):641-651.
pmid: 23685857
[2] Brenner D, Blaser H, Mak T W. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol, 2015,15(6):362-374.
doi: 10.1038/nri3834 pmid: 26008591
[3] Katsanos K H, Papadakis K A. Inflammatory bowel disease: Updates on molecular targets for biologics. Gut and Liver, 2017,11(4):455-463.
doi: 10.5009/gnl16308 pmid: 28486793
[4] Soria G, Ofri-Shahak M, Haas I, et al. Inflammatory mediators in breast cancer: Coordinated expression of TNF alpha & IL-1 beta with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. Bmc Cancer, 2011,11:130.
doi: 10.1186/1471-2407-11-130 pmid: 21486440
[5] Laddha N C, Dwivedi M, Begum R. Increased tumor necrosis factor (TNF)-alpha and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo. PLoS One, 2012,7(12):e52298.
pmid: 23284977
[6] Schioppa T, Moore R, Thompson R G, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA, 2011,108(26):10662-10667.
doi: 10.1073/pnas.1100994108 pmid: 21670304
[7] Grimm M, Lazariotou M, Kircher S, et al., Tumor necrosis factor-alpha is associated with positive lymph node status in patients with recurrence of colorectal cancer-indications for anti-TNF-alpha agents in cancer treatment. Cell Oncol (Dordr), 2011,34(4):315-326.
[8] Wcislo-Dziadecka D, Zbiciak-Nylec M, Brzezińska-Wcis?o L, et al. TNF-alpha in a molecularly targeted therapy of psoriasis and psoriatic arthritis. Postgraduate Medical Journal, 2016,92(1085):172-178.
doi: 10.1136/postgradmedj-2015-133419 pmid: 26719452
[9] De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014,32(5):263-270.
doi: 10.1016/j.tibtech.2014.03.001 pmid: 24698358
[10] Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, et al., Nanobodies and their potential applications. Nanomedicine, 2013,8(6):1013-1026.
doi: 10.2217/nnm.13.86 pmid: 23730699
[11] Alirahimi E, Kazemi-Lomedasht F, Shahbazzadeh D, et al. Nanobodies as novel therapeutic agents in envenomation. Biochimica Et Biophysica Acta-General Subjects, 2018,1862(12):2955-2965.
doi: 10.1016/j.bbagen.2018.08.019 pmid: 30309831
[12] Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem, 2013,82:775-797.
pmid: 23495938
[13] Schumacher D, Helma J, Schneider A F L, et al. Nanobodies: chemical functionalization strategies and intracellular applications. Angewandte Chemie-International Edition, 2018,57(9):2314-2333.
doi: 10.1002/anie.201708459 pmid: 28913971
[14] Chakravarty R, Goel S, Cai W. Nanobody: the “Magic Bullet”for molecular imaging. Theranostics, 2014,4(4):386-398.
pmid: 24578722
[15] Oliveira S, Heukers R, Sornkom J, et al. Targeting tumors with nanobodies for cancer imaging and therapy. Journal of Controlled Release, 2013,172(3):607-617.
doi: 10.1016/j.jconrel.2013.08.298 pmid: 24035975
[16] Oliveira S, Van Dongen G A M S, Walsum M S, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Molecular Imaging, 2012,11(1):33-46.
pmid: 22418026
[17] Revets H, De Baetselier P, Muyldermans S. Nanobodies as novel agents for cancer therapy. Expert Opinion on Biological Therapy, 2005,5(1):111-124.
doi: 10.1517/14712598.5.1.111 pmid: 15709914
[18] Cortez-Retamozo V, Backmann N, Senter P D, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Research, 2004,64(8):2853-2857.
doi: 10.1158/0008-5472.can-03-3935 pmid: 15087403
[19] Roovers R C, Vosjan M J W D, Laeremans T, et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. International Journal of Cancer, 2011,129(8):2013-2024.
doi: 10.1002/ijc.26145 pmid: 21520037
[20] Ibanez L I, De Filette M, Hultberg A, et al. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis, 2011,203(8):1063-1072.
doi: 10.1093/infdis/jiq168 pmid: 21450996
[21] Johnson Z I, Schoepflin Z R, Choi H, et al. Disc in flames: roles of TNF-α and IL-1β in intervertebral disc degeneration. European Cells & Materials, 2015,30:104-117.
doi: 10.22203/ecm.v030a08 pmid: 26388614
[22] Sampaio Lacativa P G, Fleiuss de Farias M L. Osteoporosis and inflammation. Arquivos Brasileiros De Endocrinologia E Metabologia, 2010,54(2):123-132.
doi: 10.1590/s0004-27302010000200007 pmid: 20485900
[23] Park S, Lakatta E G. Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Medical Journal, 2012,53(2):258-261.
pmid: 22318811
[24] Bortolato B, Carvalho F A, Soczynska K J, et al. The involvement of TNF-alpha in cognitive dysfunction associated with major depressive disorder: an opportunity for domain specific treatments. Current Neuropharmacology, 2015,13(5):558-576.
pmid: 26467407
[25] Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs, 2020,34(1):11-26.
doi: 10.1007/s40259-019-00392-z pmid: 31686399
[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[3] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[4] 栗波,王泽建,梁剑光,刘爱军,李海东. 等离子体作用结合氧限制模型选育利福霉素SV高产菌株 *[J]. 中国生物工程杂志, 2021, 41(2/3): 38-44.
[5] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[6] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[7] 范雁,杨淼,薛松. 基于光谱法-图像灰度法高通量筛选高效固定CO2的苯甲酸脱羧酶*[J]. 中国生物工程杂志, 2021, 41(11): 55-63.
[8] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[9] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[10] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[11] 梅雅贤,王玥,罗文新. 纳米抗体在传染病的预防、诊断和治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 24-34.
[12] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[13] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[14] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[15] 李金晶,许菲,季艳伟,舒梅,涂追,付金衡. 抗c-Myc标签纳米抗体的筛选与应用[J]. 中国生物工程杂志, 2018, 38(2): 61-67.