Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (9): 59-64    DOI: 10.13523/j.cb.20180909
技术与方法     
定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *
陈方,徐刚,杨立荣,吴坚平()
浙江大学化学工程与生物工程学院生物工程研究所 杭州 310027
Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins
Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU()
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1204 KB)   HTML
摘要:

(S)-6-氯-3-羰基-5-羟基己酸叔丁酯[(S)-CHOH]是他汀类药物合成的关键手性中间体。利用醇脱氢酶催化6-氯-3,5-二羰基己酸叔丁酯不对称合成(S)-CHOH是很有潜力的制备路线,目前存在的主要问题是醇脱氢酶催化活性较低。首先对来源于Lactobacillus kefir DSM 20587的醇脱氢酶的四点突变体LkTADH(A94T/F147L/A202L/L199H)进行回复突变,确定了关键位点147和202,并获得比酶活提高1倍的突变体MF147L-A202L。对这两个位点进行饱和突变,获得比酶活比LkTADH提高1.47倍的突变体MF147I-A202L。其比酶活为10.17U/mg,为目前文献报道最高水平。通过动力学分析和分子对接,分析了突变位点对酶活影响的机制,为后续研究奠定了良好的基础。

关键词: 醇脱氢酶(S)-6-氯-3-羰基-5-羟基己酸叔丁酯不对称合成分子改造饱和突变    
Abstract:

(S)-tert-butyl-6-chloro-5-hydroxyl-3-oxohexanoate [(S)-CHOH] is the key chiral intermediate of statins. Asymmetric reduction of tert-butyl-6-chloro-3,5- dioxohexanoate (CDOH) to (S)-CHOH catalyzed by alcohol dehydrogenases is a promising method. Nevertheless, the main problems is the low catalytic activity towards CDOH. First an alcohol dehydrogenase LkTADH (A94T/F147L/L199H/A202L) was further studied by reverse mutation and key sites (147,202) had been identified. MF147L-A202L was obtained, which demonstrated 1-fold improvement in specific activity over LkTADH. After applying saturation mutagenesis at these two sites, MF147I-A202L was obtained with 1.47-fold improvement in specific activity over LkTADH. The specific activity reached 10.17U/mg, which is the highest level as reported. Through dynamic analysis and molecular docking, the effect of mutation sites on enzyme activity was further analyzed.

Key words: Alcohol dehydrogenase    (S)-tert-butyl-6-chloro-5-hydroxyl-3-oxohexanoate    Asymmetric synthesis    Molecular modification    Saturated mutation
收稿日期: 2018-03-09 出版日期: 2018-10-12
基金资助: * 国家自然科学基金面上项目(21676240);国家973计划(2011CB710800)
通讯作者: 吴坚平     E-mail: wjp@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈方
徐刚
杨立荣
吴坚平

引用本文:

陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.

Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins. China Biotechnology, 2018, 38(9): 59-64.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180909        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I9/59

图1  生物不对称合成(S)-CHOH反应路线
ADHs Enzyme Activity(U/L) Relative activity(%) Specific activity(U/mg)
1 LkADH 7 100 0.09
2 LkTADH 203 2 900 4.11
3 MA202L-L199H-A94T 70 1 000
4 MA202L-L199H 35 500
5 MA202L 28 400 0.75
6 MF147L-A202L-L199H 140 2 000
7 MF147L-A202L 832 11 900 8.47
8 MF147L 636 9 100 6.21
9 MF147L-A94T 490 7 000
10 MF147L-L199H 126 1 800
11 MF147L-A202L-A94T 277 4 000
表1  LkTADH回复突变体对CDOH的活力比较
图2  回复突变体的基因电泳图
图3  重组蛋白诱导表达(a)及纯化(b)电泳图
ADHs Km(mmol/L) Kcat(/s) Kcat/Km[mmol/(L·s)] Kis(mmol/L) Kcat(i) (/s)
MF147L-A202L-A94T-L199H 0.99 4.18 47.10 11.27 1.87 1.05
MF147L-A202L 0.98 2.61 40.11 15.36 3.22 1.88
MF147I-A202L 0.94 2.63 45.52 17.23 3.65 1.89
表2  突变酶动力学参数比较
图4  位点L147和位点L202不同突变体对CDOH的活力比较
图5  醇脱氢酶LkTADH的催化活性中心与底物的作用
图6  94位和199位在蛋白质结构LkTADH (a)和MF147I-A202L(b) 中的位置
图7  94位在蛋白质结构LkTADH(a)和MF147I-A202L (b) 中的位置及相互作用情况
[1] He Y, Zhang D, Tao Z , et al. Improved biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by adding L-glutamine plus glycine instead of NAD + in β-cyclodextrin-water system. Bioresource Technology. 2015,182:98-102.
[2] Liu Z, Ye J, Shen Z , et al. Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system. Applied Microbiology and Biotechnology. 2015,99(5):2119-2129.
[3] He X J, Chen S Y, Wu J P , et al. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir. Appl Microbiol Biotechnol, 2015,99(21):8963-8975.
doi: 10.1007/s00253-015-6675-1
[4] Wolberg M, Hummel W, Muller M . Biocatalytic reduction of beta, delta-diketo esters: a highly stereoselective approach to all four stereoisomers of a chlorinated beta,delta-dihydroxy hexanoate. Chemistry-a European Journal. 2001,7(21):4562-4571.
doi: 10.1002/(ISSN)1521-3765
[5] Wolberg M, Hummel W, Wandrey C , et al. Highly regio- and enantioselective reduction of 3,5-dioxocarboxylates. Angewandte Chemie-International Edition. 2000,39(23):4306.
[6] Weckbecker A, Hummel W . Cloning, expression, and characterization of an( R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatalysis and Biotransformation. 2006,24(5):380-389.
[7] Licata V J, Allewell N M . Is substrate inhibition a consequence of allostery in aspartate transcarbamylase. Biophys Chem, 1997,64(1-3):225-234.
doi: 10.1016/S0301-4622(96)02204-1
[8] Noey E L, Tibrewal N . Origins of stereoselectivity in evolved ketoreductase. PNAS, 2015,12(7):E7065-E7072.
[9] Schlieben N H, Niefind K, Muller J , et al. Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. Journal of Molecular Biology, 2005,349(4):801-813.
doi: 10.1016/j.jmb.2005.04.029
[10] Filling C, Berndt K D, Benach J , et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 2002,277(28):25677-25684.
doi: 10.1074/jbc.M202160200
[1] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[2] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[3] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[4] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[5] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[6] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.
[7] 夏惠, 刘磊, 王秀, 沈妍秋, 郭雨伦, 梁东. 苹果6-磷酸山梨醇脱氢酶基因启动子逆境诱导表达特性研究[J]. 中国生物工程杂志, 2017, 37(6): 50-55.
[8] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[9] 郭永华, 陈济琛, 蔡海松, 陈龙军, 林新坚. Geobacillus sp.CHB1环糊精葡萄糖基转移酶淀粉结合位点N623饱和突变对催化效率与产物特异性的影响[J]. 中国生物工程杂志, 2016, 36(11): 30-38.
[10] 郝文博, 姬芳玲, 王静云, 张悦, 王天琪, 车文实, 包永明. D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响[J]. 中国生物工程杂志, 2016, 36(1): 47-54.
[11] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[12] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[13] 姜进举, 张宏宇, 任宝永, 施斐, 崔玉琳, 秦松. 产乙醇大肠杆菌的构建及其活性检测方法的改进[J]. 中国生物工程杂志, 2011, 31(8): 73-78.
[14] 戴小燕, 沈晓波, 朱宏阳, 徐虹. Gluconobacter oxydans NH-10中短链D-阿拉伯糖醇脱氢酶的研究[J]. 中国生物工程杂志, 2010, 30(11): 39-43.
[15] 郜赵伟 张宇宏 张伟. 微生物酶分子改造研究进展[J]. 中国生物工程杂志, 2010, 30(01): 98-103.